Showing 20 articles starting at article 501
Categories: Chemistry: Thermodynamics, Computer Science: Quantum Computers
Published With new heat treatment, 3D-printed metals can withstand extreme conditions


A new way to 3D-print metals makes the materials stronger and more resilient in extreme thermal environments. The technique could lead to 3D printed high-performance blades and vanes for gas turbines and jet engines, which would enable improved fuel consumption and energy efficiency.
Published Researchers develop superfast new method to manufacture high-performance thermoelectric devices


Aerospace and mechanical engineers have developed a machine-learning assisted superfast new way to create high-performance, energy-saving thermoelectric devices.
Published Plant fibers for sustainable devices


Plant-derived materials such as cellulose often exhibit thermally insulating properties. A new material made from nanoscale cellulose fibers shows the reverse, high thermal conductivity. This makes it useful in areas previously dominated by synthetic polymer materials. Materials based on cellulose have environmental benefits over polymers, so research on this could lead to greener technological applications where thermal conductivity is needed.
Published Clear window coating could cool buildings without using energy


As climate change intensifies summer heat, demand is growing for technologies to cool buildings. Now, researchers report that they have used advanced computing technology and artificial intelligence to design a transparent window coating that could lower the temperature inside buildings, without expending a single watt of energy.
Published Looking to sea urchins for stronger ceramic foams


New research has unlocked a mystery in the porous microstructures of sea urchin exoskeletons that could lead to the creation of lightweight synthetic ceramics.
Published Scientists discover material that can be made like a plastic but conducts like metal


Scientists have discovered a way to create a material that can be made like a plastic, but conducts electricity more like a metal. The research shows how to make a kind of material in which the molecular fragments are jumbled and disordered, but can still conduct electricity extremely well. This goes against all of the rules we know about for conductivity.
Published Researchers create lunar regolith bricks that could be used to construct Artemis base camp


As part of NASA's Artemis program to establish a long-term presence on the moon, it aims to build an Artemis base camp that includes a modern lunar cabin, rover and mobile home. This fixed habitat could potentially be constructed with bricks made of lunar regolith and saltwater, thanks to a recent discovery.
Published The next wonder semiconductor



In a study that confirms its promise as the next-generation semiconductor material, researchers have directly visualized the photocarrier transport properties of cubic boron arsenide single crystals.
Published High entropy alloys: Structural disorder and magnetic properties



High-entropy alloys (HEAs) are promising materials for catalysis and energy storage, and at the same time they are extremely hard, heat resistant and demonstrate great variability in their magnetic behavior. Now, a team has gained new insights into the local environment of a so-called high-entropy Cantor alloy made of chromium, manganese, iron, cobalt and nickel, and has thus also been able to partially explain the magnetic properties of a nanocrystalline film of this alloy.