Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Alternative Fuels
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published Researchers show classical computers can keep up with, and surpass, their quantum counterparts



A team of scientists has devised means for classical computing to mimic a quantum computing with far fewer resources than previously thought. The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.
Published Technique could improve the sensitivity of quantum sensing devices



A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.
Published Combining materials may support unique superconductivity for quantum computing



A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Greenhouse gas repurposed



Cutting-edge research converted waste carbon dioxide into a potential precursor for chemicals and carbon-free fuel.
Published Improving fuel cell durability with fatigue-resistant membranes



In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.
Published Ammonia attracts the shipping industry, but researchers warn of its risks



Switching to ammonia as a marine fuel, with the goal of decarbonization, can instead create entirely new problems. This is shown in a study where researchers carried out life cycle analyses for batteries and for three electrofuels including ammonia. Eutrophication and acidification are some of the environmental problems that can be traced to the use of ammonia -- as well as emissions of laughing gas, which is a very potent greenhouse gas.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published Magnesium protects tantalum, a promising material for making qubits



Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.
Published A physical qubit with built-in error correction



Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.
Published Scientists make breakthrough in quantum materials research



Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.
Published Scientists pull off quantum coup



Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.
Published Quantum infrared spectroscopy: Lights, detector, action!



Researchers have incorporated an innovative ultra-broadband, quantum-entangled light source that generates a relatively wide range of infrared photons with wavelengths between 2 m and 5 m for dramatically downsizing the infrared spectroscopy system and upgrading its sensitivity. It can obtain spectra for various target samples, including hard solids, plastics, and organic solutions. This new technique uses the unique properties of quantum mechanics -- such as superposition and entanglement -- to overcome the limitations of conventional techniques.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Shining a light on the hidden properties of quantum materials



Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published Misinformation and irresponsible AI -- experts forecast how technology may shape our near future



From misinformation and invisible cyber attacks, to irresponsible AI that could cause events involving multiple deaths, expert futurists have forecast how rapid technology changes may shape our world by 2040.
Published What coffee with cream can teach us about quantum physics



A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published Offshore wind farms are vulnerable to cyberattacks



Researchers have presented a new study on cyberattack risks to offshore wind farms in Glasgow, United Kingdom. They looked specifically at wind farms that use voltage-source-converter high-voltage direct-current (VSC-HVDC) connections, which are rapidly becoming the most cost-effective solution to harvest offshore wind energy around the world. They found that their complex, hybrid-communication architecture presents multiple access points for cyberattacks.
Published New sustainable method for creating organic semiconductors



Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.