Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Batteries
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Healable cathode could unlock potential of solid-state lithium-sulfur batteries



Engineers developed a cathode material for lithium-sulfur (Li-S) batteries that is healable and highly conductive, overcoming longstanding challenges of traditional sulfur cathodes. The advance holds promise for bringing more energy dense and low-cost Li-S batteries closer to market.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published Unlocking the potential of lithium-ion batteries with advanced binders



Lithium-ion batteries employ binders that encounter challenges such as poor conductivity and expansion during charging. In a recent study, scientists have developed a high-performing binder using poly(vinylphosphonic acid) for silicon oxide-based anodes in lithium-ion batteries. This binder offers enhanced performance as demonstrated by the superior durability, and discharging capacity of the anodes compared to conventional options. With patents filed internationally, this technology holds promise for broader applications in electric vehicles and beyond.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Lithium-ion batteries from drones might find second lives in less 'stressful' devices



Taking flight can be stressful -- especially for a lithium-ion battery that powers a drone. Too much strain on these cells causes damage and shortens a device's overall lifespan. Research shows the potential to improve batteries in aerial electric vehicles that take off and land vertically. The team developed a new electrolyte to address these challenges and said the 'stressed out' batteries could also have second lives in less strenuous applications.
Published Imaging grain boundaries that impede lithium-ion migration in solid-state batteries



A research team has developed a new technique to image grain boundaries obstructing lithium-ion migration in solid-state batteries -- a promising type of next-generation battery.
Published Resurrecting niobium for quantum science



Niobium has long been considered an underperformer in superconducting qubits. Scientists have now engineered a high-quality niobium-based qubit, taking advantage of niobium's superior qualities.
Published Scientists closer to solving mysteries of universe after measuring gravity in quantum world



Scientists are closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level. Experts have never fully understood how the force works in the tiny quantum world -- but now physicists have successfully detected a weak gravitational pull on a tiny particle using a new technique.
Published Measuring the properties of light: Scientists realize new method for determining quantum states



Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.
Published A new vibrant blue pottery pigment with less cobalt



Whether ultramarine, cerulean, Egyptian or cobalt, blue pigments have colored artworks for centuries. Now, seemingly out of the blue, scientists have discovered a new blue pigment that uses less cobalt but still maintains a brilliant shine. Though something like this might only happen once in a blue moon, the cobalt-doped barium aluminosilicate colorant withstands the high temperatures found in a kiln and provides a bright color to glazed tiles.
Published New water batteries stay cool under pressure



A global team of researchers has invented recyclable 'water batteries' that won't catch fire or explode. The team use water to replace organic electrolytes -- which enable the flow of electric current between the positive and negative terminals -- meaning their batteries can't start a fire or blow up -- unlike their lithium-ion counterparts.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Engineers achieve breakthrough in quantum sensing



A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.
Published Road to better performing batteries using less critical raw materials



Researchers are developing batteries that can charge faster, offer more stable storage and are made of sustainable materials that are widely available. In doing so, they offer a cheaper alternative to lithium-ion batteries that consist of rare materials and have a high CO2 -footprint.
Published A new design for quantum computers



Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator -- a specific type of quantum computer -- could lead to new discoveries about how the world works at the smallest scales. Quantum scientists have developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems.