Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Batteries
Published Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics



Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.
Published New material allows for better hydrogen-based batteries and fuel cells



Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Resource-efficient and climate-friendly with sodium-ion batteries



The transition to a society without fossil fuels means that the need for batteries is increasing at a rapid pace. At the same time, the increase will mean a shortage of the metals lithium and cobalt, which are key components in the most common battery types. One option is a sodium-ion battery, where table salt and biomass from the forest industry make up the main raw materials. Now, researchers show that these sodium-ion batteries have an equivalent climate impact as their lithium-ion counterparts -- without the risk of running out of raw materials.
Published Single-use e-cigarettes contain batteries that last hundreds of cycles despite being discarded



While the lithium-ion batteries in disposable electronic cigarettes are discarded after a single use, they can continue to perform at high capacity for hundreds of cycles, according to a new study. The analysis highlights a growing environmental threat from these increasingly popular vape pens, which are not designed to be recharged.
Published World's first logical quantum processor



A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.
Published Study on battery recycling shows China is in first place



A research team has concluded that China will be the first country worldwide to become independent of the need to mine the raw materials which are essential for batteries. They have also established that this development could be accelerated in all the regions they looked at -- including the USA and Europe.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Greener solution powers new method for lithium-ion battery recycling



Used lithium-ion batteries from cell phones, laptops and a growing number of electric vehicles are piling up, but options for recycling them remain limited mostly to burning or chemically dissolving shredded batteries. Researchers have improved on approaches that dissolve the battery in a liquid solution in order to reduce the amount of hazardous chemicals used in the process. This simple, efficient and environmentally-friendly solution overcomes the main obstacles presented by previous approaches.
Published Quantum tool opens door to uncharted phenomena



Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Promising salt for heat storage



Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published Using cosmetic ingredient for battery protection



A research team has devised a battery electrode protective film using biopolymers sourced from cosmetic ingredients.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published Template for success: Shaping hard carbon electrodes for next-generation batteries



Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.
Published Advances in lithium-metal batteries, paving the way for safer, more powerful devices



The boom in phones, laptops and other personal devices over the last few decades has been made possible by the lithium-ion (Li-ion) battery, but as climate change demands more powerful batteries for electric vehicles and grid-scale renewable storage, lithium-ion technology might not be enough. Lithium-metal batteries (LMBs) have theoretical capacities an order of magnitude greater than lithium-ion, but a more literal boom has stymied research for decades.
Published The secret to longer lasting batteries might be in how soap works



Researchers show that one of the most promising substances for designing longer lasting lithium batteries form micelle-like structures like they do in soap.
Published Lightening the load: Researchers develop autonomous electrochemistry robot



Researchers have developed an automated laboratory robot to run complex electrochemical experiments and analyze data. The Electrolab will be used to explore next-generation energy storage materials and chemical reactions that promote alternative and sustainable energy.