Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Batteries
Published Photo battery achieves competitive voltage



Researchers have developed a monolithically integrated photo battery using organic materials. The photo battery achieves an unprecedented high discharge potential of 3.6 volts. The system is capable of powering miniature devices.
Published New designs for solid-state electrolytes may soon revolutionize the battery industry



Researchers have announced a major breakthrough in the field of next-generation solid-state batteries. It is believed that their new findings will enable the creation of batteries based on a novel chloride-based solid electrolyte that exhibits exceptional ionic conductivity.
Published Making electric vehicles last



In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published New battery technology could lead to safer, high-energy electric vehicles



Researchers studying how lithium batteries fail have developed a new technology that could enable next-generation electric vehicles (EVs) and other devices that are less prone to battery fires while increasing energy storage.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit



Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Cathode active materials for lithium-ion batteries could be produced at low temperatures



Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.
Published A step on the way to solid-state batteries



A lithium ceramic could act as a solid electrolyte in a more powerful and cost-efficient generation of rechargeable lithium-ion batteries. The challenge is to find a production method that works without sintering at high temperatures. A research team has now introduced a sinter-free method for the efficient, low-temperature synthesis of these ceramics in a conductive crystalline form.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Cobalt-free battery for cleaner, greener power



High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. A team now presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published Researchers unveil fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries



A research team has succeeded in developing a non-flammable gel polymer electrolyte (GPE) that is set to revolutionize the safety of lithium-ion batteries (LIBs) by mitigating the risks of thermal runaway and fire incidents.
Published New recipe for efficient, environmentally friendly battery recycling



Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.
Published Self-correcting quantum computers within reach?



Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.