Energy: Batteries Energy: Technology Geoscience: Environmental Issues
Published

New design for lithium-air battery could offer much longer driving range compared with the lithium-ion battery      (via sciencedaily.com) 

Scientists have built and tested for a thousand cycles a lithium-air battery design that could one day be powering cars, domestic airplanes, long-haul trucks and more. Its energy storage capacity greatly surpasses that possible with lithium-ion batteries.

Energy: Batteries Energy: Fossil Fuels Energy: Technology Engineering: Graphene
Published

Ramping up domestic graphite production could aid the green energy transition      (via sciencedaily.com) 

Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.

Computer Science: General Energy: Batteries Energy: Technology
Published

New technology turns smartphones into RFID readers, saving costs and reducing waste      (via sciencedaily.com) 

Imagine you can open your fridge, open an app on your phone and immediately know which items are expiring within a few days. This is one of the applications that a new technology would enable.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing technique reveals magnetic connections      (via sciencedaily.com) 

A research team demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Securing supply chains with quantum computing      (via sciencedaily.com) 

New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.

Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

When the light is neither 'on' nor 'off' in the nanoworld      (via sciencedaily.com) 

Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail never-before-seen properties in a family of superconducting Kagome metals      (via sciencedaily.com) 

Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

Energy: Batteries Energy: Technology
Published

Novel microscope developed to design better high-performance batteries      (via sciencedaily.com) 

A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists boost quantum signals while reducing noise      (via sciencedaily.com) 

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

Energy: Batteries
Published

Beyond lithium: A promising cathode material for magnesium rechargeable batteries      (via sciencedaily.com) 

Magnesium is a promising candidate as an energy carrier for next-generation batteries. However, the cycling performance and capacity of magnesium batteries need to improve if they are to replace lithium-ion batteries. To this end, a research team focused on a novel cathode material with a spinel structure. Following extensive characterization and electrochemical performance experiments, they have found a specific composition that could open doors to high-performance magnesium rechargeable batteries.

Energy: Batteries Energy: Technology Physics: Optics
Published

Controllable 'defects' improve performance of lithium-ion batteries      (via sciencedaily.com) 

Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Energy: Batteries Energy: Technology
Published

New sodium, aluminum battery aims to integrate renewables for grid resiliency      (via sciencedaily.com) 

A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New method to control electron spin paves the way for efficient quantum computers      (via sciencedaily.com) 

Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits on strong stimulants      (via sciencedaily.com)     Original source 

In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.