Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing      (via sciencedaily.com)     Original source 

Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.

Energy: Alternative Fuels Energy: Technology Environmental: General
Published

Two million European households could abandon the electrical grid by 2050      (via sciencedaily.com)     Original source 

Researchers report that 53% of European freestanding homes could have supplied all their own energy needs in 2020 using only local rooftop solar radiation, and this technical feasibility could increase to 75% in 2050. The study shows that there is no economic advantage for individual households to be fully self-sufficient under current or future conditions, though in some cases the costs are on par with remaining on-grid. The researchers estimate that self-sufficiency will be economically feasible for 5% (two million) of Europe's 41 million freestanding single-family homes in 2050, if households are willing to pay up to 50% more than the cost of remaining fully grid dependent.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficient biohybrid batteries      (via sciencedaily.com)     Original source 

Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Energy: Technology Physics: General
Published

Wireless device makes magnetism appear in non-magnetic materials      (via sciencedaily.com)     Original source 

Researchers have succeeded in bringing wireless technology to the fundamental level of magnetic devices. The emergence and control of magnetic properties in cobalt nitride layers (initially non-magnetic) by voltage, without connecting the sample to electrical wiring, represents a paradigm shift that can facilitate the creation of magnetic nanorobots for biomedicine and computing systems where basic information management processes do not require wiring.

Chemistry: Biochemistry Energy: Batteries Energy: Technology Environmental: General
Published

New battery technology could lead to safer, high-energy electric vehicles      (via sciencedaily.com)     Original source 

Researchers studying how lithium batteries fail have developed a new technology that could enable next-generation electric vehicles (EVs) and other devices that are less prone to battery fires while increasing energy storage.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Computer Science: Quantum Computers
Published

New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit      (via sciencedaily.com)     Original source 

Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

DNA Origami nanoturbine sets new horizon for nanomotors      (via sciencedaily.com)     Original source 

Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Chemistry: General Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Bitcoin mining has 'very worrying' impacts on land and water, not only carbon      (via sciencedaily.com)     Original source 

As bitcoin and other cryptocurrencies have grown in market share, they've been criticized for their heavy carbon footprint: Cryptocurrency mining is an energy-intensive endeavor. Mining has massive water and land footprints as well, according to a new study that is the first to detail country-by-country environmental impacts of bitcoin mining.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists develop new method to create stable, efficient next-gen solar cells      (via sciencedaily.com)     Original source 

Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.

Chemistry: Biochemistry Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Cobalt-free battery for cleaner, greener power      (via sciencedaily.com)     Original source 

High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. A team now presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Potential for 110% electricity increases in U. S. urban buildings      (via sciencedaily.com)     Original source 

A research study tackled the critical issue of how city-scale building energy consumption in urban environments will evolve under the influence of climate change.

Chemistry: Biochemistry Energy: Technology Environmental: General Geoscience: Severe Weather
Published

As surging threats teeter electrical power grids, scientists offer insights to make them more resilient      (via sciencedaily.com)     Original source 

Power grids -- the web of electrical networks that sprawl across countries and continents -- are under stress. Extreme weather events and volatile energy demands often push the system to the brink. Although these high-impact events can be very damaging, often overlooked is the impact of minor disruptions that trigger a domino effect throughout the system, according to a study analyzing European power blackouts. The findings showed that recovering power within 13 hours can reduce up to 52% of the power loss stemming from cascading events.

Chemistry: Biochemistry Energy: Technology Engineering: Graphene Physics: General
Published

From a five-layer graphene sandwich, a rare electronic state emerges      (via sciencedaily.com)     Original source 

When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.

Chemistry: General Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

World may have crossed solar power 'tipping point'      (via sciencedaily.com)     Original source 

The world may have crossed a 'tipping point' that will inevitably make solar power our main source of energy, new research suggests.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Decontamination method zaps pollutants from soil      (via sciencedaily.com)     Original source 

A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.