Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Fossil Fuels
Published Quantum tool opens door to uncharted phenomena



Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Hydrogen fuel can be a competitive alternative to gasoline and diesel today



Energy researchers posit hydrogen fuel can potentially be a cost-competitive and environmentally friendly alternative to gasoline and diesel, and that supplying hydrogen for transportation in the greater Houston area can be profitable today.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published Ammonia fuel offers great benefits but demands careful action



Researchers have identified the potential environmental risks of using ammonia as a zero-carbon fuel in order to develop an engineering roadmap to a sustainable ammonia economy.
Published Solar-powered device produces clean water and clean fuel at the same time



A floating, solar-powered device that can turn contaminated water or seawater into clean hydrogen fuel and purified water, anywhere in the world, has been developed by researchers.
Published Decarbonizing light-duty transportation in the United States: Study reveals strategies to achieve goal



Researchers found that meeting greenhouse gas emissions goals for light-duty vehicles, which are passenger vehicles such as cars and trucks, is possible, but not just by increasing electric vehicle sales.
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published 3D printed reactor core makes solar fuel production more efficient



Using a new 3D printing technique, researchers have developed special ceramic structures for a solar reactor. Initial experimental testing show that these structures can boost the production yield of solar fuels.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit



Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published The effects of preheating on vehicle fuel consumption and emissions appear minimal



A new study found that the benefits of car preheating for both fuel economy and emissions are minimal. The researchers focused on vehicle fuel consumption and emissions under cold winter conditions. Of particular interest were cold start emissions and their relation to preheating.
Published Self-correcting quantum computers within reach?



Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.