Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Fossil Fuels
Published Sailing cargo ships can benefit from new aerodynamic tech



A research team has demonstrated a unique method that reduces the aerodynamic resistance of ships by 7.5 per cent. This opens the way for large cargo ships borne across the oceans by wind alone, as wind-powered ships are more affected by aerodynamic drag than fossil-fueled ones.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials



Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Eco-efficient cement could pave the way to a greener future


Scientists develop process to remove toxic heavy metals from coal fly ash, making for greener, stronger concrete.
Published Team uses natural catalysts to develop low-cost way of producing green hydrogen


Researchers have developed a practical way to produce green hydrogen using sustainable catalysts and say their work is a major step towards production simpler, more affordable and more scalable.
Published Probe where the protons go to develop better fuel cells



Researchers have uncovered the chemical inner-workings of an electrolyte they developed for a new generation of solid oxide fuel cells. To uncover the location of the proton-introduction reaction, the team studied extensively the hydration reaction of their scandium-substituted barium zirconate perovskite through a combination of synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis. The new data has the potential to accelerate the development of more efficient fuel cells.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published Public acceptance of fossil fuel subsidy removal could be improved in developing countries


People might be more positive to the removal of fuel subsidies if told where the money would be spent instead. This has been shown in a study which investigated attitudes towards removing fossil fuel subsidies in five developing countries.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Superconducting amplifiers offer high performance with lower power consumption


Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers


Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.
Published Breakthrough in the understanding of quantum turbulence


Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.
Published Rsearchers examine combined effects of two combustion technologies on the emission of coal-fired boilers


There is currently a large dependence on coal for power generation. As coal-fired plants cause environmental and health hazards, technologies such as swirl flow and air staging have been proposed to mitigate the pollutants in their emissions. However, it is unclear how effective these technologies are in reducing the environmental costs of these plants. Now, researchers have provided insights on this front in a new study, delineating their efficacies with experiments and simulations.
Published Cleaning up the atmosphere with quantum computing


Practical carbon capture technologies are still in the early stages of development, with the most promising involving a class of compounds called amines that can chemically bind with carbon dioxide. Researchers now deploy an algorithm to study amine reactions through quantum computing. An existing quantum computer cab run the algorithm to find useful amine compounds for carbon capture more quickly, analyzing larger molecules and more complex reactions than a traditional computer can.
Published Switching to hydrogen fuel could prolong the methane problem


Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.
Published Magnetism fosters unusual electronic order in quantum material


Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.