Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrons become fractions of themselves in graphene      (via sciencedaily.com)     Original source 

Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Black hole at center of the Milky Way resembles a football      (via sciencedaily.com)     Original source 

The supermassive black hole in the center of the Milky Way is spinning so quickly it is warping the spacetime surrounding it into a shape that can look like a football, according to a new study. That football shape suggests the black hole is spinning at a substantial speed, which researchers estimated to be about 60% of its potential limit.

Biology: Biochemistry Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers achieve breakthrough in quantum sensing      (via sciencedaily.com)     Original source 

A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Astronomers report oscillation of our giant, gaseous neighbor      (via sciencedaily.com)     Original source 

A few years ago, astronomers uncovered one of the Milky Way's greatest secrets: an enormous, wave-shaped chain of gaseous clouds in our sun's backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home. Naming this astonishing new structure the Radcliffe Wave, the team now reports that the Radcliffe Wave not only looks like a wave, but also moves like one -- oscillating through space-time much like 'the wave' moving through a stadium full of fans.

Chemistry: Biochemistry Energy: Nuclear Physics: General Space: Astrophysics Space: General Space: Structures and Features
Published

New nuclei can help shape our understanding of fundamental science on Earth and in the cosmos      (via sciencedaily.com)     Original source 

In creating five new isotopes, scientists have brought the stars closer to Earth. The isotopes are known as thulium-182, thulium-183, ytterbium-186, ytterbium-187 and lutetium-190.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers
Published

A new design for quantum computers      (via sciencedaily.com)     Original source 

Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator -- a specific type of quantum computer -- could lead to new discoveries about how the world works at the smallest scales. Quantum scientists have developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

1,000 atomic qubits and rising      (via sciencedaily.com)     Original source 

Making quantum systems more scalable is one of the key requirements for the further development of quantum computers because the advantages they offer become increasingly evident as the systems are scaled up. Researchers have recently taken a decisive step towards achieving this goal.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

A star like a Matryoshka doll: New theory for gravastars      (via sciencedaily.com)     Original source 

If gravitational condensate stars (or gravastars) actually existed, they would look similar to black holes to a distant observer. Two theoretical physicists have now found a new solution to Albert Einstein's theory of general relativity, according to which gravitational stars could be structured like a Russian matryoshka doll, with one gravastar located inside another.

Computer Science: General Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Fundamental equation for superconducting quantum bits revised      (via sciencedaily.com)     Original source 

Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.

Computer Science: General Computer Science: Quantum Computers Mathematics: Statistics Offbeat: Computers and Math Offbeat: General
Published

Researchers show classical computers can keep up with, and surpass, their quantum counterparts      (via sciencedaily.com)     Original source 

A team of scientists has devised means for classical computing to mimic a quantum computing with far fewer resources than previously thought. The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features
Published

Mysterious gap in size distribution of super-earths explained      (via sciencedaily.com)     Original source 

Astronomers have uncovered evidence of how the enigmatic gap in the size distribution of exoplanets at around two Earth radii emerges. Their computer simulations demonstrate that the migration of icy, so-called sub-Neptunes into the inner regions of their planetary systems could account for this phenomenon. As they draw closer to the central star, evaporating water ice forms an atmosphere that makes the planets appear larger than in their frozen state. Simultaneously, smaller rocky planets gradually lose a portion of their original gaseous envelope, causing their measured radius to shrink over time.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Technique could improve the sensitivity of quantum sensing devices      (via sciencedaily.com)     Original source 

A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining materials may support unique superconductivity for quantum computing      (via sciencedaily.com)     Original source 

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

A long, long time ago in a galaxy not so far away      (via sciencedaily.com)     Original source 

Employing massive data sets collected through NASA's James Webb Space Telescope, astronomers are unearthing clues to conditions existing in the early universe. The team has catalogued the ages of stars in the Wolf--Lundmark--Melotte (WLM) galaxy, constructing the most detailed picture of it yet, according to the researchers. WLM, a neighbor of the Milky Way, is an active center of star formation that includes ancient stars formed 13 billion years ago.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Newly discovered carbon monoxide-runaway gap can help identify habitable exoplanets      (via sciencedaily.com)     Original source 

A carbon monoxide (CO)-runaway gap identified in the atmospheres of Earth-like planets can help expand the search for habitable planets. This gap, identified through atmospheric modeling, is an indicator of a CO-rich atmosphere on Earth-like planets orbiting Sun-like stars. CO is an important compound for the formation of prebiotic organic compounds, which are building blocks for more complex molecules for the formation of life.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Which came first: Black holes or galaxies?      (via sciencedaily.com)     Original source 

Black holes not only existed at the dawn of time, they birthed new stars and supercharged galaxy formation, a new analysis of James Webb Space Telescope data suggests.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnesium protects tantalum, a promising material for making qubits      (via sciencedaily.com)     Original source 

Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.