Energy: Nuclear Offbeat: Space Physics: Quantum Physics Space: Astrophysics Space: Structures and Features
Published

Search for dark matter      (via sciencedaily.com)     Original source 

Scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method is based on the observation of the spin polarization of a particle beam in a storage ring COSY.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.

Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features Space: The Solar System
Published

Webb celebrates first year of science with close-up on birth of sun-like stars      (via sciencedaily.com)     Original source 

From our cosmic backyard in the solar system to distant galaxies near the dawn of time, NASA's James Webb Space Telescope has delivered on its promise of revealing the universe like never before in its first year of science operations. To celebrate the completion of a successful first year, NASA has released Webb's image of a small star-forming region in the Rho Ophiuchi cloud complex.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists work to prevent information loss in quantum computing      (via sciencedaily.com)     Original source 

Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Reinventing cosmology: New research puts age of universe at 26.7 -- not 13.7 -- billion years      (via sciencedaily.com)     Original source 

Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called 'impossible early galaxy problem.'

Space: Astrophysics Space: Structures and Features
Published

Record-breaking team of citizen scientists contribute data on pinwheel galaxy supernova      (via sciencedaily.com)     Original source 

Citizen scientists have set a new record for the SETI Institute and Unistellar, comprising the highest number of observers providing data on a single event. Amateur astronomers conducted a groundbreaking observation of supernova (SN) 2023ixf. The observations, which began just one hour after the supernova's first known appearance, have generated the longest continuous light curve of this supernova gathered by citizen scientists.

Space: Cosmology Space: Exploration Space: Structures and Features
Published

Webb Telescope detects most distant active supermassive black hole      (via sciencedaily.com)     Original source 

Researchers have discovered the most distant active supermassive black hole to date with the James Webb Space Telescope (JWST). The galaxy, CEERS 1019, existed about 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Space: Cosmology Space: Exploration Space: Structures and Features
Published

Webb locates dust reservoirs in two supernovae      (via sciencedaily.com)     Original source 

Researchers have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.

Computer Science: Artificial Intelligence (AI) Computer Science: Quantum Computers
Published

An easier way to learn quantum processes      (via sciencedaily.com)     Original source 

Scientists show that even a few simple examples are enough for a quantum machine-learning model, the 'quantum neural networks', to learn and predict the behavior of quantum systems, bringing us closer to a new era of quantum computing.

Space: Exploration Space: Structures and Features Space: The Solar System
Published

New image from James Webb Space Telescope reveals astonishing Saturn and its rings      (via sciencedaily.com)     Original source 

Saturn's iconic rings seem to glow eerily in this incredible infrared picture, which also unveils unexpected features in Saturn's atmosphere. This image serves as context for an observing program that will test the telescope's capacity to detect faint moons around the planet and its bright rings. Any newly discovered moons could help scientists put together a more complete picture of the current system of Saturn, as well as its past.

Space: Cosmology Space: Structures and Features Space: The Solar System
Published

Astrophysicists propose a new way of measuring cosmic expansion: Lensed gravitational waves      (via sciencedaily.com)     Original source 

The universe is expanding; we've had evidence of that for about a century. But just how quickly celestial objects are receding from each other is still up for debate.

Computer Science: Quantum Computers
Published

Scientists edge toward scalable quantum simulations on a photonic chip      (via sciencedaily.com)     Original source 

A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena.

Offbeat: Space Space: Cosmology Space: Structures and Features
Published

First 'ghost particle' image of Milky Way      (via sciencedaily.com)     Original source 

Scientists have revealed a uniquely different image of our galaxy by determining the galactic origin of thousands of neutrinos -- invisible 'ghost particles' which exist in great quantities but normally pass straight through Earth undetected. The neutrino-based image of the Milky Way is the first of its kind: a galactic portrait made with particles of matter rather than electromagnetic energy.

Offbeat: Space Space: Cosmology Space: Structures and Features
Published

Earliest strands of the cosmic web      (via sciencedaily.com)     Original source 

Galaxies are not scattered randomly across the universe. They gather together not only into clusters, but into vast interconnected filamentary structures with gigantic barren voids in between. This 'cosmic web' started out tenuous and became more distinct over time as gravity drew matter together.

Offbeat: Space Space: Structures and Features
Published

Unveiling the origins of merging black holes in galaxies like our own      (via sciencedaily.com)     Original source 

Black holes, some of the most captivating entities in the cosmos, possess an immense gravitational pull so strong that not even light can escape. The groundbreaking detection of gravitational waves in 2015, caused by the coalescence of two black holes, opened a new window into the universe. Since then, dozens of such observations have sparked the quest among astrophysicists to understand their astrophysical origins. Thanks to the POSYDON code's recent major advancements in simulating binary-star populations, a team of scientists predicted the existence of merging massive, 30 solar mass black hole binaries in Milky Way-like galaxies, challenging previous theories.

Offbeat: Space Space: Cosmology Space: Exploration Space: Structures and Features
Published

Gravitational waves from colossal black holes found using 'cosmic clocks'      (via sciencedaily.com)     Original source 

You can't see or feel it, but everything around you -- including your own body -- is slowly shrinking and expanding. It's the weird, spacetime-warping effect of gravitational waves passing through our galaxy. New results are the first evidence of the gravitational wave background -- a sort of soup of spacetime distortions pervading the entire universe and long predicted to exist by scientists.

Space: Structures and Features
Published

ALMA digs deeper into the mystery of planet formation      (via sciencedaily.com)     Original source 

An international research team has observed disks around 19 protostars with a very high resolution to search for the earliest signs of planet formation. This survey was motivated by the recent findings that planet formation may be well-underway in the more-evolved proto-planetary disks, but until now there had been no systematic study to search for signs of planet formation in younger protostellar systems.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Offbeat: General Offbeat: Space Space: Exploration Space: Structures and Features Space: The Solar System
Published

Life after death: Astronomers find a planet that shouldn't exist      (via sciencedaily.com)     Original source 

The star would have inflated up to 1.5 times the planet's orbital distance -- engulfing the planet in the process -- before shrinking to its current size at only one-tenth of that distance.