Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Space: Structures and Features
Published Astrophysicists confirm the faintest galaxy ever seen in the early universe



After the Big Bang, the universe expanded and cooled sufficiently for hydrogen atoms to form. In the absence of light from the first stars and galaxies, the universe entered a period known as the cosmic dark ages. The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today. Researchers have now confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.
Published Understanding the tantalizing benefits of tantalum for improved quantum processors



Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.
Published NIRISS instrument on Webb maps an ultra-hot Jupiter's atmosphere



There's an intriguing exoplanet out there -- 400 light-years out there -- that is so tantalizing that astronomers have been studying it since its discovery in 2009. One orbit for WASP-18 b around its star that is slightly larger than our Sun takes just 23 hours. There is nothing like it in our Solar System. A new study about this exoplanet, an ultra-hot gas giant 10 times more massive than Jupiter.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published Astronomers discover last three planets Kepler telescope observed before going dark



With the help of citizen scientists, astronomers discovered what may be the last three planets that the Kepler Space Telescope saw before it was retired.
Published One-third of galaxy's most common planets could be in habitable zone



A third of the exoplanets orbiting common M dwarf stars have gentle enough orbits to potentially be in the habitable zone capable of hosting liquid water.
Published X-ray emissions from black hole jets vary unexpectedly, challenging leading model of particle acceleration



Black hole jets are known to emit x-rays, but how they accelerate particles to this high-energy state is still a mystery. Surprising new findings appear to rule out a leading theory, opening the door to reimagining how particle acceleration works. One model of how jets generate x-rays expects the jets' x-ray emissions to remain stable over long time scales. However, the new paper found that the x-ray emissions of a statistically significant number of jets varied over just a few years.
Published The search for habitable planets expands



Astronomers are suggesting a new way to expand the search for habitable planets that takes into account a zone not previously considered: the space between the star and what's called soot-line in planet-forming disks.
Published Astronomers discover a key planetary system to understand the formation mechanism of the mysterious 'super-Earths'



A study presents the detection of a system of two planets slightly larger than Earth orbiting a cold star in a synchronized dance. Named TOI-2096, the system is located 150 light-years from Earth. This system, located 150 light-years from Earth, is one of the best candidates for a detailed study of their atmosphere with the JWST space telescope.
Published New study provides novel insights into the cosmic evolution of amino acids



All biological amino acids on Earth appear exclusively in their left-handed form, but the reason underlying this observation is elusive. Recently, scientists uncovered new clues about the cosmic origin of this asymmetry. Based on the optical properties of amino acids found on the Murchison meteorite, they conducted physics-based simulations, revealing that the precursors to the biological amino acids may have determined the amino acid chirality during the early phase of galactic evolution.
Published Helium nuclei research advances our understanding of cosmic ray origin and propagation



The latest observations from Low Earth Orbit with the International Space Station provide further evidence of spectral hardening and softening of cosmic ray particles.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Scientists propose revolution in complex systems modelling with quantum technologies



Scientists have made a significant advancement with quantum technologies that could transform complex systems modelling with an accurate and effective approach that requires significantly re-duced memory.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Boost for the quantum internet



A quarter of a century ago, theoretical physicists proposed a way to transmit quantum information via quantum repeaters over long distances which would open the door to the construction of a worldwide quantum information network. Now, a new generation of researchers has built a quantum repeater node for the standard wavelength of telecommunication networks and transmitted quantum information over tens of kilometers.
Published NASA's Hubble hunts for intermediate-sized black hole close to home



Astronomers have come up with what they say is some of their best evidence yet for the presence of a rare class of 'intermediate-sized' black hole that may be lurking in the heart of the closest globular star cluster to Earth, located 6,000 light-years away.
Published Element creation in the lab deepens understanding of surface explosions on neutron stars



Scientists working in the lab have produced a signature nuclear reaction that occurs on the surface of a neutron star gobbling mass from a companion star. Their achievement improves understanding of stellar processes generating diverse nuclear isotopes.
Published An X-ray look at the heart of powerful quasars



Researchers have observed the X-ray emission of the most luminous quasar seen in the last 9 billion years of cosmic history, known as SMSS J114447.77-430859.3, or J1144 for short. The new perspective sheds light on the inner workings of quasars and how they interact with their environment.
Published Wiring up quantum circuits with light



The number of qubits in superconducting quantum computers has risen rapidly during the last years, but further growth is limited by the need for ultra-cold operating temperatures. Connecting several smaller processors could create larger, more computationally powerful quantum computers -- however doing so poses new challenges. Researchers have now demonstrated quantum entanglement between optical and microwave photons that could lay the foundation for such a future quantum network.
Published Curved spacetime in a quantum simulator



The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.