Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator      (via sciencedaily.com) 

Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Galaxy changes classification as jet changes direction      (via sciencedaily.com) 

A team of international astronomers have discovered a galaxy that has changed classification due to unique activity within its core. The galaxy, named PBC J2333.9-2343, was previously classified as a radio galaxy, but the new research has revealed otherwise.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists open door to manipulating 'quantum light'      (via sciencedaily.com) 

How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sculpting quantum materials for the electronics of the future      (via sciencedaily.com) 

The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

'Terminator zones' on distant planets could harbor life      (via sciencedaily.com) 

In a new study, astronomers describe how extraterrestrial life has the potential to exist on distant exoplanets inside a special area called the 'terminator zone,' which is a ring on planets that have one side that always faces its star and one side that is always dark.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb Telescope captures rarely seen prelude to supernova      (via sciencedaily.com) 

The rare sight of a Wolf-Rayet star -- among the most luminous, most massive, and most briefly detectable stars known -- was one of the first observations made by NASA's James Webb Space Telescope in June 2022. Webb shows the star, WR 124, in unprecedented detail with its powerful infrared instruments. The star is 15,000 light-years away in the constellation Sagittarius.

Computer Science: General Computer Science: Quantum Computers Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Cleaning up the atmosphere with quantum computing      (via sciencedaily.com) 

Practical carbon capture technologies are still in the early stages of development, with the most promising involving a class of compounds called amines that can chemically bind with carbon dioxide. Researchers now deploy an algorithm to study amine reactions through quantum computing. An existing quantum computer cab run the algorithm to find useful amine compounds for carbon capture more quickly, analyzing larger molecules and more complex reactions than a traditional computer can.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

ALMA traces history of water in planet formation back to the interstellar medium      (via sciencedaily.com) 

Observations of water in the disk forming around protostar V883 Ori have unlocked clues about the formation of comets and planetesimals in our own solar system.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

The planet that could end life on Earth      (via sciencedaily.com) 

A terrestrial planet hovering between Mars and Jupiter would be able to push Earth out of the solar system and wipe out life on this planet, according to a recent experiment.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.

Chemistry: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits      (via sciencedaily.com) 

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Ultracool dwarf binary stars break records      (via sciencedaily.com) 

Astrophysicists have discovered the tightest ultracool dwarf binary system ever observed. The two stars are so close that it takes them less than one Earth day to revolve around each other. In other words, each star's 'year' lasts just 17 hours.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum chemistry: Molecules caught tunneling      (via sciencedaily.com) 

Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.