Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Quantum Physics
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published An easier way to learn quantum processes



Scientists show that even a few simple examples are enough for a quantum machine-learning model, the 'quantum neural networks', to learn and predict the behavior of quantum systems, bringing us closer to a new era of quantum computing.
Published Scientists edge toward scalable quantum simulations on a photonic chip



A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena.
Published Research breakthrough could be significant for quantum computing future



Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.
Published Researchers make a quantum computing leap with a magnetic twist



Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.
Published 'Toggle switch' can help quantum computers cut through the noise



What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Combining twistronics with spintronics could be the next giant leap in quantum electronics



Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.
Published Groundwork for future ultra-precise timing links to geosynchronous satellites



Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.
Published Open-source software to speed up quantum research



Quantum technology is expected to fundamentally change many key areas of society. Researchers are convinced that there are many more useful quantum properties and applications to explore than those we know today. A team of researchers has now developed open-source, freely available software that will pave the way for new discoveries in the field and accelerate quantum research significantly.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published Metamaterials with built-in frustration have mechanical memory



Researchers have discovered how to design materials that necessarily have a point or line where the material doesn't deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Schrödinger's cat makes better qubits



Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Physicists discover an exotic material made of bosons



Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.