Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Quantum Physics
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published Shedding light on quantum photonics


As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.
Published Can you trust your quantum simulator?


Physicists have developed a protocol to verify the accuracy of quantum experiments.
Published Blast chiller for the quantum world


The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.
Published The optical fiber that keeps data safe even after being twisted or bent


An optical fiber that uses the mathematical concept of topology to remain robust, thereby guaranteeing the high-speed transfer of information, has been created by physicists.
Published The thermodynamics of quantum computing


In research on quantum computers, one aspect that has been mostly neglected until now is the generation of heat. Physicists now focus their attention on heat as an interference factor -- and have developed a method to experimentally measure the heat generated by a superconducting quantum system.
Published New quantum computing architecture could be used to connect large-scale devices


Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.
Published Researchers show a new way to induce useful defects using invisible material properties



Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.
Published Chaos gives the quantum world a temperature


Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.
Published Quantum dots at room temp, using lab-designed protein



Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents -- a process that is neither economical nor environmentally friendly. But researchers have now pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature. Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials.
Published A peculiar protected structure links Viking knots with quantum vortices



Mathematical analysis identifies a vortex structure that is impervious to decay.
Published Curved spacetime in the lab


In a laboratory experiment, researchers have succeeded in realizing an effective spacetime that can be manipulated. In their research on ultracold quantum gases, they were able to simulate an entire family of curved universes to investigate different cosmological scenarios and compare them with the predictions of a quantum field theoretical model.
Published New quantum dots study uncovers implications for biological imaging


Researchers report the synthesis of semiconductor 'giant' core-shell quantum dots with record-breaking emissive lifetimes. In addition, the lifetimes can be tuned by making a simple alteration to the material's internal structure.
Published New instrument measures supercurrent flow, data has applications in quantum computing


An extreme-scale nanoscope is beginning to collect data about how pulses of light at trillions of cycles per second can control supercurrents in materials. The instrument could one day help optimize superconducting quantum bits, which are at the heart of quantum computing, a new and developing technology.
Published Changing the color of quantum light on an integrated chip


Recently, researchers have developed an integrated electro-optic modulator that can efficiently change the frequency and bandwidth of single photons. The device could be used for more advanced quantum computing and quantum networks.
Published An exotic interplay of electrons


Water that simply will not freeze, no matter how cold it gets -- a research group has discovered a quantum state that could be described in this way. Experts have managed to cool a special material to near absolute zero temperature. They found that a central property of atoms -- their alignment -- did not 'freeze', as usual, but remained in a 'liquid' state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors.
Published Physicists observe wormhole dynamics using a quantum computer



Scientists have developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole.
Published Pulses driven by artificial intelligence tame quantum systems



Machine learning drives self-discovery of pulses that stabilize quantum systems in the face of environmental noise.
Published New quantum computing feat is a modern twist on a 150-year-old thought experiment


New research demonstrates a 20x improvement in resetting a quantum bit to its '0' state, using a modern version of the 'Maxwell's demon'.
Published Quantum algorithm of the direct calculation of energy derivatives developed for molecular geometry optimization


Researchers have successfully extended the quantum phase difference estimation algorithm, a general quantum algorithm for the direct calculations of energy gaps, to enable the direct calculation of energy differences between two different molecular geometries. This allows for the computation, based on the finite difference method, of energy derivatives with respect to nuclear coordinates in a single calculation.