Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Optics
Published An optical lens that senses gas



A research team has developed a small optical lens, only a few millimeters in size, whose refractive behavior changes in the presence of gas. This 'intelligent' behavior of the micro-lens is enabled by the hybrid glass material from which it is made. The molecular structure of the lens consists of a three-dimensional lattice with cavities that can accommodate gas molecules, thereby affecting the optical properties of the material.
Published Light-weight microscope captures large-scale brain activity of mice on the move



With a new microscope that's as light as a penny, researchers can now observe broad swaths of the brain in action as mice move about and interact with their environments.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials



Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published Moving objects precisely with sound



Researchers have succeeded in directing floating objects around an aquatic obstacle course using only soundwaves. Their novel, optics-inspired method holds great promise for biomedical applications such as noninvasive targeted drug delivery.
Published Novel application of optical tweezers: Colorfully showing molecular energy transfer



Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.
Published Controlling electronics with light: The magnetite breakthrough



Researchers have discovered that by shining different wavelengths (colors) of light on a material called magnetite, they can change its state, e.g. making it more or less conducive to electricity. The discovery could lead to new ways of designing new materials for electronics such as memory storage, sensors, and other devices that rely on fast and efficient material responses.
Published Scientists at uOttawa develop innovative method to validate quantum photonics circuits performance



A team of researchers has developed an innovative technique for evaluating the performance of quantum circuits. This significant advancement represents a substantial leap forward in the field of quantum computing.
Published Researchers leverage shadows to model 3D scenes, including objects blocked from view



A new technique can model an entire 3D scene, including areas hidden from view, from just one camera image. The method relies on image shadows, which provide information about the geometry and location of hidden objects.
Published Breakthrough may clear major hurdle for quantum computers



The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published Researchers film energy materials as they form



Shooting a movie in the lab requires special equipment. Especially when the actors are molecules -- invisible to the naked eye -- reacting with each other. 'Imagine trying to film tiny lava flows during a volcanic eruption. Your smartphone camera wouldn't be up to the job.
Published Towards wider 5G network coverage: Novel wirelessly powered relay transceiver



A novel 256-element wirelessly powered transceiver array for non-line-of-sight 5G communication, featuring efficient wireless power transmission and high-power conversion efficiency, has been designed. The innovative design can enhance the 5G network coverage even to places with link blockage, improving flexibility and coverage area, and potentially making high-speed, low-latency communication more accessible.
Published New material puts eco-friendly methanol conversion within reach



Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Custom-made molecules designed to be invisible while absorbing near-infrared light



Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published When bacteria are buckling



Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. The results provide an important basis for the use of cyanobacteria in modern biotechnology.
Published Reduction of esters by a novel photocatalyst



A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.
Published Quantum entanglement measures Earth rotation



Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.
Published New approach to identifying altermagnetic materials



An international team has discovered a spectrum characteristic of an altermagnetic material with X-ray magnetic circular dichroism.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Novel insights into fluorescent 'dark states' illuminate ways forward for improved imaging



Scientists address decades-long problem in the field of single-molecule fluorescence resonance energy transfer, paving the way for more accurate experiments.