Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films      (via sciencedaily.com)     Original source 

If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Understanding quantum states: New research shows importance of precise topography in solid neon qubits      (via sciencedaily.com)     Original source 

A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A chip-scale Titanium-sapphire laser      (via sciencedaily.com)     Original source 

With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Precision instrument bolsters efforts to find elusive dark energy      (via sciencedaily.com)     Original source 

Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

A new study highlights potential of ultrafast laser processing for next-gen devices      (via sciencedaily.com)     Original source 

A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Novel application of optical tweezers: Colorfully showing molecular energy transfer      (via sciencedaily.com)     Original source 

Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Controlling electronics with light: The magnetite breakthrough      (via sciencedaily.com)     Original source 

Researchers have discovered that by shining different wavelengths (colors) of light on a material called magnetite, they can change its state, e.g. making it more or less conducive to electricity. The discovery could lead to new ways of designing new materials for electronics such as memory storage, sensors, and other devices that rely on fast and efficient material responses.

Computer Science: Quantum Computers
Published

Scientists at uOttawa develop innovative method to validate quantum photonics circuits performance      (via sciencedaily.com)     Original source 

A team of researchers has developed an innovative technique for evaluating the performance of quantum circuits. This significant advancement represents a substantial leap forward in the field of quantum computing.

Physics: General Physics: Quantum Physics
Published

New NOvA results add to mystery of neutrinos      (via sciencedaily.com)     Original source 

The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers film energy materials as they form      (via sciencedaily.com)     Original source 

Shooting a movie in the lab requires special equipment. Especially when the actors are molecules -- invisible to the naked eye -- reacting with each other. 'Imagine trying to film tiny lava flows during a volcanic eruption. Your smartphone camera wouldn't be up to the job.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: General
Published

Molecular sponge for the electronics of the future      (via sciencedaily.com)     Original source 

An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.

Computer Science: Quantum Computers Geoscience: Earth Science Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement measures Earth rotation      (via sciencedaily.com)     Original source 

Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A liquid crystal source of photon pairs      (via sciencedaily.com)     Original source 

Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Novel insights into fluorescent 'dark states' illuminate ways forward for improved imaging      (via sciencedaily.com)     Original source 

Scientists address decades-long problem in the field of single-molecule fluorescence resonance energy transfer, paving the way for more accurate experiments.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Pair plasmas found in deep space can now be generated in the lab      (via sciencedaily.com)     Original source 

Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.

Computer Science: Quantum Computers Geoscience: Earth Science Geoscience: Severe Weather Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum data assimilation: A quantum leap in weather prediction      (via sciencedaily.com)     Original source 

Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.