Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Acoustics and Ultrasound
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Would the highly sensitive transparent ultrasound transducer revolutionize biomedical imaging technology?



A team develops an ultrasensitive broadband transparent ultrasound transducer.
Published Shape-shifting ultrasound stickers detect post-surgical complications



Gastrointestinal surgeries carry risk of fluid leaks, a potentially life-threatening complication. But no existing methods can reliably and non-invasively detect these leaks. To address this unmet need, researchers developed a tiny, soft, flexible sticker that changes in shape inside the body, enabling standard ultrasound tech to detect leaks for earlier detection and intervention. After the patient has recovered, the soft, tiny sticker simply dissolves away.
Published Doctors can now watch spinal cord activity during surgery



Scientists can make high resolution images of the human spinal cord during surgery. The advancement could help bring real relief to millions suffering chronic back pain.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Advanced noise suppression technology for improved search and rescue drones



Unmanned Aerial Vehicles (UAVs) are beneficial in search and rescue missions during natural disasters like earthquakes. However, current UAVs depend on visual information and cannot detect victims trapped under rubble. While some studies have used sound for detection, the noise from UAV propellers can drown out human sounds. To address this issue, researchers have developed a novel artificial intelligence-based system that effectively suppresses UAV noise and amplifies human sounds.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published New cardiovascular imaging approach provides a better view of dangerous plaques



Researchers have developed a new catheter-based device that combines two powerful optical techniques to image the dangerous plaques that can build up inside the arteries that supply blood to the heart. By providing new details about plaque, the device could help clinicians and researchers improve treatments for preventing heart attacks and strokes.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Pythagoras was wrong: there are no universal musical harmonies, new study finds



The tone and tuning of musical instruments has the power to manipulate our appreciation of harmony, new research shows. The findings challenge centuries of Western music theory and encourage greater experimentation with instruments from different cultures.
Published Resurrecting niobium for quantum science



Niobium has long been considered an underperformer in superconducting qubits. Scientists have now engineered a high-quality niobium-based qubit, taking advantage of niobium's superior qualities.
Published Scientists closer to solving mysteries of universe after measuring gravity in quantum world



Scientists are closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level. Experts have never fully understood how the force works in the tiny quantum world -- but now physicists have successfully detected a weak gravitational pull on a tiny particle using a new technique.
Published Measuring the properties of light: Scientists realize new method for determining quantum states



Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Engineers achieve breakthrough in quantum sensing



A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.
Published A new design for quantum computers



Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator -- a specific type of quantum computer -- could lead to new discoveries about how the world works at the smallest scales. Quantum scientists have developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems.