Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Acoustics and Ultrasound
Published Exploring parameter shift for quantum fisher information



Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.
Published A new way to erase quantum computer errors



Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors.
Published Pingpong balls score big as sound absorbers



Researchers describe an acoustic meta-surface that uses pingpong balls, with small holes punctured in each, as Helmholtz resonators to create inexpensive but effective low-frequency sound insulation. The coupling between two resonators led to two resonance frequencies, and more resonant frequencies meant the device was able to absorb more sound. At the success of two coupled resonators, the researchers added more, until their device resembled a square sheet of punctured pingpong balls, multiplying the number of resonant frequencies that could be absorbed.
Published Medical imaging fails dark skin: Researchers fixed it



A team found a way to deliver clear pictures of anyone's internal anatomy, no matter their skin tone.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Examining the superconducting diode effect



Scientists have reviewed the superconducting diode effect, a quantum effect enabling dissipationless supercurrent to flow in only one direction. The SDE provides new functionalities for superconducting circuits and future ultra-low energy superconducting/hybrid devices, with potential for quantum technologies in both classical and quantum computing.
Published Ultrasound may rid groundwater of toxic 'forever chemicals'



New research suggests that ultrasound may have potential in treating a group of harmful chemicals known as PFAS to eliminate them from contaminated groundwater.
Published Powering the quantum revolution: Quantum engines on the horizon



Scientists unveil exciting possibilities for the development of highly efficient quantum devices.
Published New qubit circuit enables quantum operations with higher accuracy


Researchers have developed a novel superconducting qubit architecture that can perform operations between qubits with much higher accuracy than scientists have yet been able to achieve. This architecture, which utilizes a relatively new type of superconducting qubit called fluxonium, is scalable and could be used to someday build a large-scale quantum computer.
Published Shape-changing smart speaker lets users mute different areas of a room


A team has developed a shape-changing smart speaker, which uses self-deploying microphones to divide rooms into speech zones and track the positions of individual speakers.
Published A linear path to efficient quantum technologies



Researchers have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit -- thereby opening up new perspectives for a wide range of photonic quantum technologies.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published Machine learning contributes to better quantum error correction


Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published A system to keep cloud-based gamers in sync


A new technique can synchronize media streams from different networks to multiple devices with less than 10 milliseconds of delay. The technique was demonstrated on cloud gaming, but could also be applied in AR/VR applications.
Published Researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potential


Optical-resolution photoacoustic microscopy is an up-and-coming biomedical imaging technique for studying a broad range of diseases, such as cancer, diabetes and stroke. But its insufficient sensitivity has been a longstanding obstacle for its wider application. Recently, a research team developed a multi-spectral, super-low-dose photoacoustic microscopy system with a significant improvement in the system sensitivity limit, enabling new biomedical applications and clinical translation in the future.
Published Experiencing the texture of skateboard sounds can mediate divisions new research says


Experiencing the harsh sounds of skateboarding can help bridge the gulf between the joy and distaste of the noises created by the sport, a new study says.