Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

When electrons slowly vanish during cooling      (via sciencedaily.com) 

Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.

Physics: Acoustics and Ultrasound
Published

A wearable ultrasound scanner could detect breast cancer earlier      (via sciencedaily.com) 

In hopes of improving the survival rate for breast cancer patients, researchers designed a wearable ultrasound device that could allow women to detect tumors when they are still in early stages.

Physics: Acoustics and Ultrasound
Published

A quick look inside a human being      (via sciencedaily.com)     Original source 

Physicists have succeeded in making a new imaging technique ready for use on humans. Radioactive markers and radiation are not necessary for this.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of quantum bit in semiconductor nanostructures      (via sciencedaily.com) 

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers establish criterion for nonlocal quantum behavior in networks      (via sciencedaily.com) 

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

New superconductors can be built atom by atom      (via sciencedaily.com) 

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists work to prevent information loss in quantum computing      (via sciencedaily.com)     Original source 

Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.

Physics: Acoustics and Ultrasound
Published

Acoustics researchers decompose sound accurately into its three basic components      (via sciencedaily.com)     Original source 

Any sound can now be perfectly replicated by a combination of whistles, clicks, and hisses, with implications for sound processing across the media landscape.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Computer Science: Artificial Intelligence (AI) Computer Science: Quantum Computers
Published

An easier way to learn quantum processes      (via sciencedaily.com)     Original source 

Scientists show that even a few simple examples are enough for a quantum machine-learning model, the 'quantum neural networks', to learn and predict the behavior of quantum systems, bringing us closer to a new era of quantum computing.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Physics: Acoustics and Ultrasound
Published

Robotic glove that 'feels' lends a 'hand' to relearn playing piano after a stroke      (via sciencedaily.com)     Original source 

A new soft robotic glove is lending a 'hand' and providing hope to piano players who have suffered a disabling stroke or other neurotrauma. Combining flexible tactile sensors, soft actuators and AI, this robotic glove is the first to 'feel' the difference between correct and incorrect versions of the same song and to combine these features into a single hand exoskeleton. Unlike prior exoskeletons, this new technology provides precise force and guidance in recovering the fine finger movements required for piano playing and other complex tasks.

Computer Science: Quantum Computers
Published

Scientists edge toward scalable quantum simulations on a photonic chip      (via sciencedaily.com)     Original source 

A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: Quantum Computing
Published

Researchers make a quantum computing leap with a magnetic twist      (via sciencedaily.com)     Original source 

Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.

Computer Science: Encryption Physics: Acoustics and Ultrasound
Published

How secure are voice authentication systems really?      (via sciencedaily.com)     Original source 

Computer scientists have discovered a method of attack that can successfully bypass voice authentication security systems with up to a 99% success rate after only six tries.

Physics: Acoustics and Ultrasound
Published

Researchers use ultrasound to control orientation of small particles      (via sciencedaily.com)     Original source 

Acoustic waves may be able to control how particles sort themselves. While researchers have been able to separate particles based on their shape -- for example, bacteria from other cells -- for years, the ability to control their movement has remained a largely unsolved problem, until now. Using ultrasound technology and a nozzle, researchers have separated, controlled and ejected different particles based on their shape and various properties.

Energy: Alternative Fuels Physics: Acoustics and Ultrasound
Published

Wind farm noise exposure doesn't wake people up from their slumber more than road traffic noise      (via sciencedaily.com)     Original source 

Short exposure to wind farm and road traffic noise triggers a small increase in people waking from their slumber that can fragment their sleep patterns, according to new research. But importantly, the new study also shows that wind farm noise isn't more disruptive to sleep than road traffic, which was a little more disruptive at the loudest audio level but not at more common levels. Sleep researchers have studied the impact of exposure to wind farm noise during sleep in three new scientific publications to better understand its impact.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Geoscience: Earthquakes Physics: Acoustics and Ultrasound
Published

When soft spheres make porous media stiffer      (via sciencedaily.com)     Original source 

Porous media such as concrete physically represent a spherical packing of different components -- in this case cement, rock and water. The mechanical properties of such mixtures are still difficult to calculate due to their discretized nature. A team has now been able to investigate an unexpected property of mixtures of granular media consisting of soft and stiff spherical particles. For this purpose, a combination of ultrasound investigations and X-ray computed tomographic imaging was employed, allowing a three-dimensional (3D) characterization and evaluation. The discovery could contribute to safer future building in earthquake zones.