Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Acoustics and Ultrasound
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Researchers help AI express uncertainty to improve health monitoring tech



A team of engineering and health researchers has developed a tool that improves the ability of electronic devices to detect when a human patient is coughing, which has applications in health monitoring. The new tool relies on an advanced artificial intelligence (AI) algorithm that helps the AI better identify uncertainty when faced with unexpected data in real-world situations.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published AI-equipped eyeglasses read silent speech



Researchers have developed a silent-speech recognition interface that uses acoustic-sensing and artificial intelligence to continuously recognize up to 31 unvocalized commands, based on lip and mouth movements.
Published How to overcome noise in quantum computations



Scientists have made significant progress in quantum computing by deriving a formula that predicts the effects of environmental noise. This is crucial for designing and building quantum computers capable of working in our imperfect world.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Detecting, predicting, and preventing aortic ruptures with computational modeling



According to some estimates, up to 80% of patients who experience a ruptured abdominal aortic aneurysm will die before they reach the hospital or during surgery. But early intervention can prevent rupture and improve outcomes. Researchers have now made a computational model of the cardiovascular system in order to predict early AAA rupture and monitor patients' blood vessel conditions. They mimicked specific health conditions and investigated various hemodynamic parameters using image-based computational blood dynamics.
Published Smart films help to make loudspeakers lighter and more energy-efficient



Scientists are developing intelligent materials that are opening up new avenues in sound reproduction technology: lightweight loudspeakers that use far less energy than their conventional counterparts, novel shapes for sound and signal generators and applications involving noise cancelling textiles. The basis for these smart materials are ultrathin silicone films that can act as artificial muscles with their own built-in sensors.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials



Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Pulsing ultrasound waves could someday remove microplastics from waterways


Colorful particles of plastic drift along under the surface of most waterways. These barely visible microplastics -- less than 5 mm wide -- are potentially harmful to aquatic animals and plants, as well as humans. Now, a team reports a two-stage device made with steel tubes and pulsing sound waves that removes most of the plastic particles from real water samples.
Published What do the elements sound like?


In chemistry, we have He, Fe and Ca -- but what about do, re and mi? Using a technique called data sonification, a recent college graduate has converted the visible light given off by each of the elements into soundwaves. The notes produced for each element are unique, complex mixtures and are the first step toward an interactive, musical periodic table.
Published Road noise makes your blood pressure rise -- literally


If you live near a busy road you might feel like the constant sound of roaring engines, honking horns and wailing sirens makes your blood pressure rise. Now a new study confirms it can do exactly that.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published Vocal tract size, shape dictate speech sounds


Researchers explore how anatomical variations in a speaker's vocal tract affect speech production. Using MRI, the team recorded the shape of the vocal tract for 41 speakers as the subjects produced a series of representative speech sounds. They averaged these shapes to establish a sound-independent model of the vocal tract. Then they used statistical analysis to extract the main variations between speakers. A handful of factors explained nearly 90% of the differences between speakers.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Superconducting amplifiers offer high performance with lower power consumption


Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers


Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.