Chemistry: Thermodynamics Energy: Technology Physics: Acoustics and Ultrasound
Published

Study offers details on using electric fields to tune thermal properties of ferroelectric materials      (via sciencedaily.com) 

New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.

Physics: Acoustics and Ultrasound
Published

First wearable device for vocal fatigue senses when your voice needs a break      (via sciencedaily.com) 

Researchers have developed the first smart wearable device to continuously track how much people use their voices, alerting them to overuse before vocal fatigue and potential injury set in. The soft, flexible, postage-stamp-sized device comfortably adheres to the upper chest to sense the subtle vibrations associated with talking and singing. From there, the captured data is instantaneously streamed via Bluetooth to the users' smartphone or tablet, so they can monitor their vocal activities in real time throughout the day and measure cumulative total vocal usage. Custom machine-learning algorithms distinguish the difference between speaking and singing, enabling singers to separately track each activity.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing technique reveals magnetic connections      (via sciencedaily.com) 

A research team demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Securing supply chains with quantum computing      (via sciencedaily.com) 

New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.

Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

When the light is neither 'on' nor 'off' in the nanoworld      (via sciencedaily.com) 

Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.

Physics: Acoustics and Ultrasound Space: Exploration
Published

The roar and crackle of Artemis 1      (via sciencedaily.com)     Original source 

When the Artemis 1 mission was launched in November, it became the world's most powerful rocket, and with liftoff came a loud roar heard miles away. Researchers report noise measurements during the launch at different locations around Kennedy Space Center. The data collected can be used to validate existing noise prediction models, which are needed to protect equipment as well as the surrounding environment and community.

Biology: Developmental Offbeat: Plants and Animals Physics: Acoustics and Ultrasound
Published

Creating 3D objects with sound      (via sciencedaily.com) 

Scientists have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads and even biological cells can be printed. These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail never-before-seen properties in a family of superconducting Kagome metals      (via sciencedaily.com) 

Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists boost quantum signals while reducing noise      (via sciencedaily.com) 

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

Physics: Acoustics and Ultrasound
Published

Focused ultrasound technique leads to release of neurodegenerative disorders biomarkers      (via sciencedaily.com) 

New research found that using focused-ultrasound-mediated liquid biopsy in a mouse model released more tau proteins and another biomarker into the blood than without the intervention. This noninvasive method could facilitate diagnosis of neurodegenerative disorders, the researchers said.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New method to control electron spin paves the way for efficient quantum computers      (via sciencedaily.com) 

Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits on strong stimulants      (via sciencedaily.com)     Original source 

In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists make major nanoscopic advance      (via sciencedaily.com)     Original source 

In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.