Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Computer Science: Virtual Reality (VR)
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Published Will the convergence of light and matter in Janus particles transcend performance limitations in the optical display industry?



Team successfully exerted electrical control over polaritons, hybridized light-matter particles, at room temperature.
Published Chemical reactions can scramble quantum information as well as black holes



A team of researchers has shown that molecules can be as formidable at scrambling quantum information as black holes by combining mathematical tools from black hole physics and chemical physics and testing their theory in chemical reactions.
Published Progress in quantum physics: Researchers tame superconductors



An international team including researchers from the University of W rzburg has succeeded in creating a special state of superconductivity. This discovery could advance the development of quantum computers.
Published 100 kilometers of quantum-encrypted transfer



Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.
Published A new type of cooling for quantum simulators



Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.
Published Bullseye! Accurately centering quantum dots within photonic chips



Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.
Published Pairing crypto mining with green hydrogen offers clean energy boost



Pairing cryptocurrency mining -- notable for its outsize consumption of carbon-based fuel -- with green hydrogen could provide the foundation for wider deployment of renewable energy, such as solar and wind power, according to a new study.
Published Scientists deliver quantum algorithm to develop new materials and chemistry



Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.
Published The world is one step closer to secure quantum communication on a global scale



Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published Novel quantum algorithm for high-quality solutions to combinatorial optimization problems



Conventional quantum algorithms are not feasible for solving combinatorial optimization problems (COPs) with constraints in the operation time of quantum computers. To address this issue, researchers have developed a novel algorithm called post-processing variationally scheduled quantum algorithm. The novelty of this innovative algorithm lies in the use of a post-processing technique combined with variational scheduling to achieve high-quality solutions to COPs in a short time.
Published Verifying the work of quantum computers



Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.
Published Quantum talk with magnetic disks



Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.
Published Where quantum computers can score



The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.
Published Holographic message encoded in simple plastic



Important data can be stored and concealed quite easily in ordinary plastic using 3D printers and terahertz radiation, scientists show. Holography can be done quite easily: A 3D printer can be used to produce a panel from normal plastic in which a QR code can be stored, for example. The message is read using terahertz rays -- electromagnetic radiation that is invisible to the human eye.
Published An innovative mixed light field technique for immersive projection mapping



A novel mixed light field technique that utilizes a mix of ray-controlled ambient lighting with projection mapping (PM) to obtain PM in bright surroundings has been developed by scientists. This innovative technology utilizes a novel kaleidoscope array to achieve ray-controlled lighting and a binary search algorithm for removing ambient lighting from PM targets. It provides an immersive augmented reality experience with applications in various fields.
Published Virtual reality better than video for evoking fear, spurring climate action



Depicting worst-case climate scenarios like expanding deserts and dying coral reefs may better motivate people to support environmental policies when delivered via virtual reality, according to a research team that studied how VR and message framing affect the impact of environmental advocacy communications. The study findings may help advocacy groups decide how best to frame and deliver their messages.
Published Opening new doors in the VR world, literally



Recreating the action of opening doors in the virtual world requires engineering ways in which to provide the equivalent haptic feedback and steer users away from walls in the real world. A research group has done just this; developing RedirectedDoors+, which employs door robots and rotation to create a more realistic experience.
Published Straightening teeth? AI can help



A new tool will help orthodontists correctly fit braces onto teeth. Using artificial intelligence and virtual patients, the tool predicts how teeth will move, so as to ensure that braces are neither too loose nor too tight.