Computer Science: General Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Fundamental equation for superconducting quantum bits revised      (via sciencedaily.com)     Original source 

Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Mathematics: Modeling
Published

Innovations in depth from focus/defocus pave the way to more capable computer vision systems      (via sciencedaily.com)     Original source 

In an image, estimating the distance between objects and the camera by using the blur in the images as clue, also known as depth from focus/defocus, is essential in computer vision. However, model-based methods fail when texture-less surfaces are present, and learning-based methods require the same camera settings during training and testing. Now, researchers have come up with an innovative strategy for depth estimation that combines the best of both the worlds to solve these limitations, extending the applicability of depth from focus/defocus.

Computer Science: General Computer Science: Quantum Computers Mathematics: Statistics Offbeat: Computers and Math Offbeat: General
Published

Researchers show classical computers can keep up with, and surpass, their quantum counterparts      (via sciencedaily.com)     Original source 

A team of scientists has devised means for classical computing to mimic a quantum computing with far fewer resources than previously thought. The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Technique could improve the sensitivity of quantum sensing devices      (via sciencedaily.com)     Original source 

A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining materials may support unique superconductivity for quantum computing      (via sciencedaily.com)     Original source 

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.

Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

One person can supervise 'swarm' of 100 unmanned autonomous vehicles      (via sciencedaily.com)     Original source 

Research involving has shown that a 'swarm' of more than 100 autonomous ground and aerial robots can be supervised by one person without subjecting the individual to an undue workload.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnesium protects tantalum, a promising material for making qubits      (via sciencedaily.com)     Original source 

Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make breakthrough in quantum materials research      (via sciencedaily.com)     Original source 

Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

Computer Science: General Computer Science: Virtual Reality (VR)
Published

Bringing together real-world sensors and VR to improve building maintenance      (via sciencedaily.com)     Original source 

A new system that brings together real-world sensing and virtual reality would make it easier for building maintenance personnel to identify and fix issues in commercial buildings that are in operation.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists pull off quantum coup      (via sciencedaily.com)     Original source 

Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.

Computer Science: Quantum Computers
Published

Quantum infrared spectroscopy: Lights, detector, action!      (via sciencedaily.com)     Original source 

Researchers have incorporated an innovative ultra-broadband, quantum-entangled light source that generates a relatively wide range of infrared photons with wavelengths between 2 m and 5 m for dramatically downsizing the infrared spectroscopy system and upgrading its sensitivity. It can obtain spectra for various target samples, including hard solids, plastics, and organic solutions. This new technique uses the unique properties of quantum mechanics -- such as superposition and entanglement -- to overcome the limitations of conventional techniques.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Shining a light on the hidden properties of quantum materials      (via sciencedaily.com)     Original source 

Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers add a 'twist' to classical material design      (via sciencedaily.com)     Original source 

Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.

Computer Science: General Computer Science: Quantum Computers
Published

Misinformation and irresponsible AI -- experts forecast how technology may shape our near future      (via sciencedaily.com)     Original source 

From misinformation and invisible cyber attacks, to irresponsible AI that could cause events involving multiple deaths, expert futurists have forecast how rapid technology changes may shape our world by 2040.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What coffee with cream can teach us about quantum physics      (via sciencedaily.com)     Original source 

A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Towards the quantum of sound      (via sciencedaily.com)     Original source 

A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.