Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

'Smart glove' can boost hand mobility of stroke patients      (via sciencedaily.com)     Original source 

This month, a group of stroke survivors in British Columbia will test a new technology designed to aid their recovery, and ultimately restore use of their limbs and hands. Participants will wear a new groundbreaking 'smart glove' capable of tracking their hand and finger movements during rehabilitation exercises.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Experiment could test quantum nature of large masses for the first time      (via sciencedaily.com)     Original source 

A new experiment could in principle test the quantumness of an object regardless of its mass or energy.

Chemistry: Biochemistry Computer Science: Quantum Computers Energy: Nuclear Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Solid-state qubits: Forget about being clean, embrace mess      (via sciencedaily.com)     Original source 

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First direct imaging of small noble gas clusters at room temperature      (via sciencedaily.com)     Original source 

Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.

Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

Artificial intelligence helps unlock advances in wireless communications      (via sciencedaily.com)     Original source 

A new wave of communication technology is quickly approaching and researchers are now investigating ways to configure next-generation mobile networks.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Computer Science: General Computer Science: Virtual Reality (VR)
Published

Wireless tracking system could help improve the XR experience      (via sciencedaily.com)     Original source 

Engineers developed a technology that delivers centimeter-level accuracy for real-time tracking in extended reality (XR) applications. It uses wireless signals to ensure precise asset localization and smooth tracking, promising to enhance virtual gaming experiences and workplace safety.

Computer Science: Virtual Reality (VR) Physics: Optics
Published

360-degree head-up display view could warn drivers of road obstacles in real time      (via sciencedaily.com)     Original source 

Researchers have developed an augmented reality head-up display that could improve road safety by displaying potential hazards as high-resolution three-dimensional holograms directly in a driver's field of vision in real time.

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Could an electric nudge to the head help your doctor operate a surgical robot?      (via sciencedaily.com)     Original source 

People who received gentle electric currents on the back of their heads learned to maneuver a robotic surgery tool in virtual reality and then in a real setting much more easily than people who didn't receive those nudges, a new study shows.

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Cognitive strategies for augmenting the body with a wearable, robotic arm      (via sciencedaily.com)     Original source 

Scientists show that breathing may be used to control a wearable extra robotic arm in healthy individuals, without hindering control of other parts of the body.

Biology: Biochemistry Biology: Zoology Chemistry: Biochemistry Computer Science: General Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Immersive VR goggles for mice unlock new potential for brain science      (via sciencedaily.com)     Original source 

New miniature virtual reality (VR) goggles provide more immersive experiences for mice living in laboratory settings. By more faithfully simulating natural environments, the researchers can more accurately and precisely study the neural circuitry that underlies behavior. Compared to current state-of-the-art systems, which simply surround mice with computer or projection screens, the new goggles provide a leap in advancement.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's first logical quantum processor      (via sciencedaily.com)     Original source 

A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Diamonds and rust help unveil 'impossible' quasi-particles      (via sciencedaily.com)     Original source 

Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.

Computer Science: Virtual Reality (VR)
Published

Scientists propose a model to predict personal learning performance for virtual reality-based safety training      (via sciencedaily.com)     Original source 

In Korea, workers are being provided with virtual reality (VR)-based safety training content to mitigate the increase in occupational accidents. However, the current training evaluation methods suffer from a lack of immediate feedback from participants for personal learning performance evaluation. To address this, a team of researchers has now developed a new framework that uses real-time biometric data during VR training for improving personalized safety and preventing occupational hazards.