Computer Science: Virtual Reality (VR)
Published

Virtual driving assessment predicts risk of crashing for newly licensed teen drivers      (via sciencedaily.com)     Original source 

New research found that driving skills measured at the time of licensure on a virtual driving assessment (VDA), which exposes drivers to common serious crash scenarios, helps predict crash risk in newly licensed young drivers. This study brings the research community one step closer to identifying which skill deficits put young new drivers at higher risk for crashes. With this cutting-edge information, more personalized interventions can be developed to improve the driving skills that prevent crashes.

Computer Science: General Computer Science: Quantum Computers
Published

Self-correcting quantum computers within reach?      (via sciencedaily.com)     Original source 

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.

Computer Science: General Computer Science: Quantum Computers
Published

Exploring parameter shift for quantum fisher information      (via sciencedaily.com)     Original source 

Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.

Computer Science: General Computer Science: Quantum Computers
Published

A new way to erase quantum computer errors      (via sciencedaily.com)     Original source 

Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors. 

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Computer Science: Quantum Computers
Published

Examining the superconducting diode effect      (via sciencedaily.com)     Original source 

Scientists have reviewed the superconducting diode effect, a quantum effect enabling dissipationless supercurrent to flow in only one direction. The SDE provides new functionalities for superconducting circuits and future ultra-low energy superconducting/hybrid devices, with potential for quantum technologies in both classical and quantum computing.

Computer Science: Virtual Reality (VR)
Published

New internet addiction spectrum: Where are you on the scale?      (via sciencedaily.com)     Original source 

Young people (24 years and younger) spend an average of six hours a day online, primarily using their smartphones, according to new research. Older people (those 24 years and older) spend 4.6 hours online.

Computer Science: General Computer Science: Quantum Computers
Published

New qubit circuit enables quantum operations with higher accuracy      (via sciencedaily.com) 

Researchers have developed a novel superconducting qubit architecture that can perform operations between qubits with much higher accuracy than scientists have yet been able to achieve. This architecture, which utilizes a relatively new type of superconducting qubit called fluxonium, is scalable and could be used to someday build a large-scale quantum computer.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Computer Science: General Computer Science: Virtual Reality (VR) Mathematics: Modeling
Published

Drug discovery on an unprecedented scale      (via sciencedaily.com) 

Boosting virtual screening with machine learning allowed for a 10-fold time reduction in the processing of 1.56 billion drug-like molecules. Researchers teamed up with industry and supercomputers to carry out one of the world's largest virtual drug screens.

Chemistry: Biochemistry Computer Science: General Computer Science: Virtual Reality (VR)
Published

Let it flow: Recreating water flow for virtual reality      (via sciencedaily.com) 

A research team has harnessed the power of deep reinforcement learning to replicate the flow of water when disturbed. The replication allowed for recreating water flow in real time based on only a small amount of data, opening up the possibility for virtual reality interactions involving water.

Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR)
Published

Assessing unintended consequences in AI-based neurosurgical training      (via sciencedaily.com) 

A new study shows that human instruction is still necessary to detect and compensate for unintended, and sometimes negative, changes in neurosurgeon behavior after virtual reality AI training. This finding has implications for other fields of training.

Computer Science: Quantum Computers
Published

A linear path to efficient quantum technologies      (via sciencedaily.com)     Original source 

Researchers have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit -- thereby opening up new perspectives for a wide range of photonic quantum technologies.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Atomically-precise quantum antidots via vacancy self-assembly      (via sciencedaily.com) 

Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Deriving the fundamental limit of heat current in quantum mechanical many-particle systems      (via sciencedaily.com) 

Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.

Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.

Computer Science: General Computer Science: Virtual Reality (VR) Physics: Acoustics and Ultrasound
Published

A system to keep cloud-based gamers in sync      (via sciencedaily.com) 

A new technique can synchronize media streams from different networks to multiple devices with less than 10 milliseconds of delay. The technique was demonstrated on cloud gaming, but could also be applied in AR/VR applications.