Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Computer Science: Virtual Reality (VR)
Published Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time


Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Published Researchers devise a new path toward 'quantum light'


Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.
Published Researchers take a step toward novel quantum simulators


If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.
Published Autonomous steering system keeps human drivers engaged


Researchers have developed an automated driving system based on the concept of 'collaborative steering', which aims to increase transportation safety, efficiency, and comfort by encouraging active interaction between autonomous vehicles and their human drivers.
Published New method to control electron spin paves the way for efficient quantum computers


Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.
Published Qubits on strong stimulants



In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.
Published Quantum physicists make major nanoscopic advance



In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published Shedding light on quantum photonics


As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.
Published Can you trust your quantum simulator?


Physicists have developed a protocol to verify the accuracy of quantum experiments.
Published Blast chiller for the quantum world


The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.
Published The optical fiber that keeps data safe even after being twisted or bent


An optical fiber that uses the mathematical concept of topology to remain robust, thereby guaranteeing the high-speed transfer of information, has been created by physicists.
Published The thermodynamics of quantum computing


In research on quantum computers, one aspect that has been mostly neglected until now is the generation of heat. Physicists now focus their attention on heat as an interference factor -- and have developed a method to experimentally measure the heat generated by a superconducting quantum system.
Published New quantum computing architecture could be used to connect large-scale devices


Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.
Published Researchers show a new way to induce useful defects using invisible material properties



Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.
Published Virtual reality game to objectively detect ADHD


A virtual reality game offers an objective assessment of attention deficit disorders and may lead to an improved therapeutic approach.
Published When using virtual reality as a teaching tool, context and 'feeling real' matter


Psychologists had people learn words from two phonetically similar languages in virtual reality environments. Those who learned each language in its own unique context mixed up fewer words and were able to recall 92% of the words they had learned. In contrast, participants who had learned both sets of words in the same VR context were more likely to confuse terms between the two languages and retained only 76% of the words. Regardless of group, those participants who felt immersed in the VR world remembered more than those who did not feel immersed.
Published Researchers develop wireless, ultrathin 'Skin VR' to provide a vivid, 'personalized' touch experience in the virtual world


Enhancing the virtual experience with the touch sensation has become a hot topic, but today's haptic devices remain typically bulky and tangled with wires. Researchers have now developed an advanced wireless haptic interface system, called WeTac, worn on the hand, which has soft, ultrathin soft features, and collects personalized tactile sensation data to provide a vivid touch experience in the metaverse.