Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional interface superconductor could benefit quantum computing      (via sciencedaily.com)     Original source 

A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'

Computer Science: Quantum Computers
Published

Qubit coherence decay traced to thermal dissipation      (via sciencedaily.com)     Original source 

Hitherto a mystery, the thermal energy loss of qubits can be explained with a surprisingly simple experimental setup, according to new research.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

New heaviest exotic antimatter nucleus      (via sciencedaily.com)     Original source 

Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum pumping in molecular junctions      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Advancing modular quantum information processing      (via sciencedaily.com)     Original source 

A team of physicists envisions a modular system for scaling quantum processors with a flexible way of linking qubits over long distances to enable them to work in concert to perform quantum operations. The ability to carry out such correlated or 'entangling' operations between linked qubits is the basis of the enhanced power quantum computing holds compared with current computers.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Galaxies in dense environments tend to be larger, settling one cosmic question and raising others      (via sciencedaily.com)     Original source 

A new study has found galaxies with more neighbors tend to be larger than their counterparts that have a similar shape and mass, but reside in less dense environments. The team, which used a machine-learning algorithm to analyze millions of galaxies, reports that galaxies found in denser regions of the universe are as much as 25% larger than isolated galaxies. The findings resolve a long-standing debate among astrophysicists over the relationship between a galaxy's size and its environment, but also raise new questions about how galaxies form and evolve over billions of years.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Achieving quantum memory in the hard X-ray range      (via sciencedaily.com)     Original source 

Physicists have used Doppler-shifted nuclear resonant absorbers to form a nuclear frequency comb, enabling a quantum memory in the notoriously difficult X-ray range.

Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

X-ray imagery of vibrating diamond opens avenues for quantum sensing      (via sciencedaily.com)     Original source 

Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.

Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Cold antimatter for quantum state-resolved precision measurements      (via sciencedaily.com)     Original source 

Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Bright prospects for engineering quantum light      (via sciencedaily.com)     Original source 

Computers benefit greatly from being connected to the internet, so we might ask: What good is a quantum computer without a quantum internet?

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop general framework for designing quantum sensors      (via sciencedaily.com)     Original source 

Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.

Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

What no one has seen before -- simulation of gravitational waves from failing warp drive      (via sciencedaily.com)     Original source 

Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical fibers fit for the age of quantum computing      (via sciencedaily.com)     Original source 

A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.

Computer Science: General Computer Science: Quantum Computers
Published

Folded peptides are more electrically conductive than unfolded peptides      (via sciencedaily.com)     Original source 

What puts the electronic pep in peptides? A folded structure, according to a new study. Researchers combined single-molecule experiments, molecular dynamics simulations and quantum mechanics to validate the findings.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Kink state' control may provide pathway to quantum electronics      (via sciencedaily.com)     Original source 

The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.