Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Environmental: Biodiversity
Published Symmetric graphene quantum dots for future qubits



Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.
Published Archaea in a warming climate become less diverse, more predictable



Using a long-term multifactor experimental field site researchers showed that experimental warming of a tallgrass prairie ecosystem significantly altered the community structure of soil archaea and reduced their taxonomic and phylogenetic diversity.
Published Researchers develop manual for engineering spin dynamics in nanomagnets



An international team of researchers has developed a comprehensive manual for engineering spin dynamics in nanomagnets -- an important step toward advancing spintronic and quantum-information technologies.
Published Vanishing glaciers threaten alpine biodiversity



With glaciers melting at unprecedented rates due to climate change, invertebrates that live in the cold meltwater rivers of the European Alps will face widespread habitat loss, warn researchers. Many of the species are likely to become restricted to cold habitats that will only persist higher in the mountains, and these areas are also likely to see pressures from the skiing and tourism industries or from the development of hydroelectric plants.
Published Quantum computer in reverse gear



Large numbers can only be factorized with a great deal of computational effort. Physicists are now providing a blueprint for a new type of quantum computer to solve the factorization problem, which is a cornerstone of modern cryptography.
Published Fossil find in California shakes up the natural history of cycad plants



According to researchers, a new analysis of an 80-million-year-old permineralized pollen cone found in the Campanian Holz Shale formation located in Silverado Canyon, California, offers a more accurate cycad natural history -- one where the plants diversified during the Cretaceous.
Published Quantum entanglement of photons doubles microscope resolution



Using a "spooky" phenomenon of quantum physics, researchers have discovered a way to double the resolution of light microscopes.
Published New research redefines mammalian tree of life



Scientists from around the globe are using the largest mammalian genomic dataset in history to determine the evolutionary history of the human genome in the context of mammalian evolutionary history. Their ultimate goal is to better identify the genetic basis for traits and diseases in people and other species.
Published Elephant ecosystems in decline



Global space for Asian elephant habitats has been in rapid decline since the 1700s, a new report reveals. More than 3 million square kilometers of the Asian elephant's historic habitat range has been lost in just three centuries and may underlie present-day conflicts between elephants and people.
Published Ant mounds are more important for biodiversity than previously thought



The ant mounds on the heath, in the forest and in your garden are oases for life. The heat and nutrients from ant mounds make them the perfect home for unique plant and animal species, according to new research.
Published Researchers explore techniques to successfully reintroduce captive birds into the wild



Studies show that some species may require breeding in captivity within the next 200 years to avoid extinction. This reality places heavy importance on the reintroduction practices used to successfully transfer species from captivity to the wild. A new study looks at some of the most popular conservation techniques and identifies which have the highest likelihood of success for the reintroduction of bird species back into the wild.
Published Tunneling electrons



By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Abundance of urban honeybees adversely impacts wild bee populations



Researchers argue that the rapid growth in urban honeybee-keeping over the past decade may be negatively impacting nearby wild bee populations. Small bees with limited foraging ranges may be especially at risk, they write.
Published Mysterious underwater acoustic world of British ponds revealed in new study



The previously hidden and diverse underwater acoustic world in British ponds has been uncovered by a team of researchers.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published Neuroptera: Greater insect diversity in the Cretaceous period



An LMU team has studied the biodiversity of larvae from the insect order neuroptera over the past 100 million years.
Published Newly sequenced hornet genomes could help explain invasion success



The genomes of two hornet species, the European hornet and the Asian hornet (or yellow-legged hornet) have been sequenced.
Published The climate crisis and biodiversity crisis can't be approached as two separate things



Anthropogenic climate change has, together with the intensive use and destruction of natural ecosystems through agriculture, fishing and industry, sparked an unprecedented loss of biodiversity that continues to worsen. In this regard, the climate crisis and biodiversity crisis are often viewed as two separate catastrophes. An international team of researchers calls for adopting a new perspective.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate



The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Two qudits fully entangled



Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.