Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

NASA's Webb scores another ringed world with new image of Uranus      (via sciencedaily.com)     Original source 

Following in the footsteps of the Neptune image released in 2022, NASA's James Webb Space Telescope has taken a stunning image of the solar system's other ice giant, the planet Uranus. The new image features dramatic rings as well as bright features in the planet's atmosphere. The Webb data demonstrates the observatory's unprecedented sensitivity for the faintest dusty rings, which have only ever been imaged by two other facilities: the Voyager 2 spacecraft as it flew past the planet in 1986, and the Keck Observatory with advanced adaptive optics.

Computer Science: General Computer Science: Quantum Computers
Published

How to overcome noise in quantum computations      (via sciencedaily.com)     Original source 

Scientists have made significant progress in quantum computing by deriving a formula that predicts the effects of environmental noise. This is crucial for designing and building quantum computers capable of working in our imperfect world.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Offbeat: Space Space: Astrophysics Space: General Space: The Solar System
Published

How were amino acids, one of the key building blocks of life, formed before the origin of life on Earth?      (via sciencedaily.com)     Original source 

The amino acid abundances of two Ryugu particles were measured and compared with their rocky components. The results demonstrate the important role that water plays in the formation of amino acids on the giant precursors of asteroids like Ryugu. Our solar system formed from a molecular cloud, which was composed of gas and dust that was emitted into the interstellar medium (ISM), a vast space between stars. On collapse of the molecular cloud, the early sun was formed, with a large disk of gas and dust orbiting it. The dusty material collided to produce rocky material that would eventually grow in size to give large bodies called planetesimals.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

DMI allows magnon-magnon coupling in hybrid perovskites      (via sciencedaily.com)     Original source 

An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Do Earth-like exoplanets have magnetic fields? Far-off radio signal is promising sign      (via sciencedaily.com)     Original source 

Earth's magnetic field does more than keep everyone's compass needles pointed in the same direction. It also helps preserve Earth's sliver of life-sustaining atmosphere by deflecting high energy particles and plasma regularly blasted out of the sun. Researchers have now identified a prospective Earth-sized planet in another solar system as a prime candidate for also having a magnetic field -- YZ Ceti b, a rocky planet orbiting a star about 12 light-years away from Earth.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Absolute zero in the quantum computer      (via sciencedaily.com)     Original source 

Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials      (via sciencedaily.com)     Original source 

Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Redness of Neptunian asteroids sheds light on early Solar System      (via sciencedaily.com) 

Asteroids sharing their orbits with the planet Neptune have been observed to exist in a broad spectrum of red color, implying the existence of two populations of asteroids in the region, according to a new study by an international team of researchers.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

JWST confirms giant planet atmospheres vary widely      (via sciencedaily.com) 

Astronomers have found the atmospheric compositions of giant planets out in the galaxy do not fit our own solar system trend.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Temperature of a rocky exoplanet measured      (via sciencedaily.com) 

An international team of researchers has used NASA's James Webb Space Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1 b. The measurement is based on the planet's thermal emission: heat energy given off in the form of infrared light detected by Webb's Mid-Infrared Instrument (MIRI). The result indicates that the planet's dayside has a temperature of about 500 kelvins (roughly 450 degrees Fahrenheit) and suggests that it has no significant atmosphere.

Space: Exploration Space: General Space: The Solar System
Published

Two meteorites are providing a detailed look into outer space      (via sciencedaily.com) 

If you've ever seen a shooting star, you might have seen a meteor on its way to Earth. Those that land here can be used to peek back in time, into the far corners of outer space or at the earliest building blocks of life. Scientists have conducted some of the most detailed analyses yet on the organic material of two meteorites.

Chemistry: Inorganic Chemistry Physics: General Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

AI finds the first stars were not alone      (via sciencedaily.com) 

Machine learning and state-of-the-art supernova nucleosynthesis has helped researchers find that the majority of observed second-generation stars in the universe were enriched by multiple supernovae.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Surprisingly simple explanation for the alien comet 'Oumuamua's weird orbit      (via sciencedaily.com) 

When the first interstellar comet ever seen in our solar system was discovered in 2017, one characteristic -- an unexplained acceleration away from the sun -- sparked wild speculation, including that it was an alien spacecraft. An astrochemist found a simpler explanation and tested it with an astronomer: in interstellar space, cosmic rays converted water to hydrogen in the comet's outer layers. Nearing the sun, outgassed hydrogen gave the tiny comet a kick.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Searching for life with space dust      (via sciencedaily.com) 

Following enormous collisions, such as asteroid impacts, some amount of material from an impacted world may be ejected into space. This material can travel vast distances and for extremely long periods of time. In theory this material could contain direct or indirect signs of life from the host world, such as fossils of microorganisms. And this material could be detectable by humans in the near future, or even now.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Hunting Venus 2.0: Scientists sharpen their sights      (via sciencedaily.com) 

With the first paper compiling all known information about planets like Venus beyond our solar system, scientists are the closest they've ever been to finding an analog of Earth's 'twin.'

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Uracil found in Ryugu samples      (via sciencedaily.com) 

Samples from the asteroid Ryugu collected by the Hayabusa2 mission contain nitrogenous organic compounds, including the nucleobase uracil, which is a part of RNA.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Y-ball' compound yields quantum secrets      (via sciencedaily.com) 

Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator      (via sciencedaily.com) 

Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Galaxy changes classification as jet changes direction      (via sciencedaily.com) 

A team of international astronomers have discovered a galaxy that has changed classification due to unique activity within its core. The galaxy, named PBC J2333.9-2343, was previously classified as a radio galaxy, but the new research has revealed otherwise.

Space: Exploration Space: General Space: The Solar System
Published

ESO telescopes on the aftermath of DART's asteroid impact      (via sciencedaily.com) 

Using ESO's Very Large Telescope (VLT), two teams of astronomers have observed the aftermath of the collision between NASA's Double Asteroid Redirection Test (DART) spacecraft and the asteroid Dimorphos. The controlled impact was a test of planetary defence, but also gave astronomers a unique opportunity to learn more about the asteroid's composition from the expelled material.