Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Environmental: Wildfires
Published Smoke covered 70% of California during biggest wildfire years



As much as 70 percent of California was covered by wildfire smoke during parts of 2020 and 2021, according to a new study.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published How AI helps programming a quantum computer



Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.
Published 2D materials: A catalyst for future quantum technologies



Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.
Published World's smallest quantum light detector on a silicon chip



Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.
Published Wavefunction matching for solving quantum many-body problems



Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published How wildfires change soil chemistry



Severe wildfires can drive chemical changes in soil that affect ecosystem recovery and risks to human health. A new study finds broader surveillance and modeling of these changes could inform strategies for protecting lives, property and natural resources, and managing wildlife.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Improved wildfire smoke model identifies areas for public health intervention



The Canadian wildfires of June 2023 exposed a large portion of the Northeastern United States to unprecedented levels of smoke. A new model that combines wildfire smoke forecasts and data from ground-based sensors may help public health officials plan targeted interventions in areas most at risk for the negative health effects of unexpected smoke events and air pollution, according to scientists.
Published New super-pure silicon chip opens path to powerful quantum computers



Researchers have invented a breakthrough technique for manufacturing highly purified silicon that brings powerful quantum computers a big step closer.
Published Experiment opens door for millions of qubits on one chip



Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.
Published New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques



Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.
Published Physicists arrange atoms in extremely close proximity



Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.
Published Wildfires in wet African forests have doubled in recent decades



Climate change and human activities like deforestation are causing more fires in central and west Africa's wet, tropical forests, according to the first-ever comprehensive survey there. The fires have long been overlooked.
Published Scientists test for quantum nature of gravity



A new study reports on a deep new probe into the interface between the theories of gravity and quantum mechanics, using ultra-high energy neutrino particles detected by a particle detector set deep into the Antarctic glacier at the south pole.
Published Significant new discovery in teleportation research -- Noise can improve the quality of quantum teleportation



Researchers succeeded in conducting an almost perfect quantum teleportation despite the presence of noise that usually disrupts the transfer of quantum state.
Published Physicists build new device that is foundation for quantum computing



Scientists have adapted a device called a microwave circulator for use in quantum computers, allowing them for the first time to precisely tune the exact degree of nonreciprocity between a qubit, the fundamental unit of quantum computing, and a microwave-resonant cavity. The ability to precisely tune the degree of nonreciprocity is an important tool to have in quantum information processing. In doing so, the team derived a general and widely applicable theory that simplifies and expands upon older understandings of nonreciprocity so that future work on similar topics can take advantage of the team's model, even when using different components and platforms.
Published Researchers unlock potential of 2D magnetic devices for future computing



A research team has created an innovative method to control tiny magnetic states within ultrathin, two-dimensional van der Waals magnets -- a process akin to how flipping a light switch controls a bulb.