Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Environmental: Wildfires
Published Scientists show that there is indeed an 'entropy' of quantum entanglement



Scientists have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of 'entropy' for the phenomenon of quantum entanglement. This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers.
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published Anthropologist documents how women and shepherds historically reduced wildfire risk in Central Italy



Fire management lessons from the past could help to improve resilience as the Mediterranean faces increased fire risk from climate change. How traditional land management practices once greatly reduced fuel for wildfires, and how these practices were forgotten, in part due to historical politics of classism and sexism.
Published Scientists tune the entanglement structure in an array of qubits



A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.
Published Modeling broader effects of wildfires in Siberia



As wildfires in Siberia become more common, global climate modeling estimates significant impacts on climate, air quality, health, and economies in East Asia and across the northern hemisphere.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published Lead-vacancy centers in diamond as building blocks for large-scale quantum networks



A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published Compact quantum light processing



An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.
Published Unique field study shows how climate change affects fire-impacted forests



During the unusually dry year of 2018, Sweden was hit by numerous forest fires. A research team has investigated how climate change affects recently burnt boreal forests and their ability to absorb carbon dioxide.
Published Researchers shine light on rapid changes in Arctic and boreal ecosystems



Arctic and boreal latitudes are warming faster than any other region on Earth.
Published CO2 worsens wildfires by helping plants grow



By fueling the growth of plants that become kindling, carbon dioxide is driving an increase in the severity and frequency of wildfires, according to a new study.
Published Fires pose growing worldwide threat to wildland-urban interface



Fires that devastate wildland-urban interface areas are becoming more common around the globe, a trend that is likely to continue for at least the next two decades, new research finds. Such fires are especially dangerous, both because they imperil large numbers of people and because they emit far more toxins than forest and grassland fires.
Published Crucial connection for 'quantum internet' made for the first time



Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.
Published Quantum precision: A new kind of resistor



Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.
Published Breakthrough promises secure quantum computing at home



The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing.
Published Quantum breakthrough when light makes materials magnetic



The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.
Published New method of measuring qubits promises ease of scalability in a microscopic package



The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.