Computer Science: Quantum Computers
Published

Scientists show that there is indeed an 'entropy' of quantum entanglement      (via sciencedaily.com)     Original source 

Scientists have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of 'entropy' for the phenomenon of quantum entanglement. This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers.

Computer Science: Quantum Computers Mathematics: General Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The end of the quantum tunnel      (via sciencedaily.com)     Original source 

Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

From disorder to order: Flocking birds and 'spinning' particles      (via sciencedaily.com)     Original source 

Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.

Environmental: Ecosystems Environmental: General Environmental: Wildfires
Published

Anthropologist documents how women and shepherds historically reduced wildfire risk in Central Italy      (via sciencedaily.com)     Original source 

Fire management lessons from the past could help to improve resilience as the Mediterranean faces increased fire risk from climate change. How traditional land management practices once greatly reduced fuel for wildfires, and how these practices were forgotten, in part due to historical politics of classism and sexism.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists tune the entanglement structure in an array of qubits      (via sciencedaily.com)     Original source 

A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.

Environmental: General Environmental: Wildfires Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography
Published

Modeling broader effects of wildfires in Siberia      (via sciencedaily.com)     Original source 

As wildfires in Siberia become more common, global climate modeling estimates significant impacts on climate, air quality, health, and economies in East Asia and across the northern hemisphere.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Condensed matter physics: Novel one-dimensional superconductor      (via sciencedaily.com)     Original source 

In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks      (via sciencedaily.com)     Original source 

A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.

Computer Science: Quantum Computers Energy: Technology Mathematics: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Manipulating the geometry of 'electron universe' in magnets      (via sciencedaily.com)     Original source 

Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perfecting the view on a crystal's imperfection      (via sciencedaily.com)     Original source 

Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Biology: Botany Ecology: Endangered Species Ecology: Nature Environmental: General Environmental: Wildfires Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

CO2 worsens wildfires by helping plants grow      (via sciencedaily.com)     Original source 

By fueling the growth of plants that become kindling, carbon dioxide is driving an increase in the severity and frequency of wildfires, according to a new study.

Environmental: General Environmental: Wildfires Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography
Published

Fires pose growing worldwide threat to wildland-urban interface      (via sciencedaily.com)     Original source 

Fires that devastate wildland-urban interface areas are becoming more common around the globe, a trend that is likely to continue for at least the next two decades, new research finds. Such fires are especially dangerous, both because they imperil large numbers of people and because they emit far more toxins than forest and grassland fires.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Crucial connection for 'quantum internet' made for the first time      (via sciencedaily.com)     Original source 

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.

Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum precision: A new kind of resistor      (via sciencedaily.com)     Original source 

Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Breakthrough promises secure quantum computing at home      (via sciencedaily.com)     Original source 

The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum breakthrough when light makes materials magnetic      (via sciencedaily.com)     Original source 

The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New method of measuring qubits promises ease of scalability in a microscopic package      (via sciencedaily.com)     Original source 

The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.