Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Geoscience: Volcanoes
Published Atmospheric circulation weakens following volcanic eruptions



An international team of scientists found that volcanic eruptions can cause the Pacific Walker Circulation to temporarily weaken, inducing El Niño-like conditions. The results provide important insights into how El Niño and La Niña events may change in the future.
Published Quantum physicists simulate super diffusion on a quantum computer


Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.
Published Switching 'spin' on and off (and up and down) in quantum materials at room temperature


Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Quantum material exhibits 'non-local' behavior that mimics brain function


New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Carbon dioxide -- not water -- triggers explosive basaltic volcanoes



Geoscientists have long thought that water -- along with shallow magma stored in Earth's crust -- drives volcanoes to erupt. Now, thanks to newly developed research tools, scientists have learned that gaseous carbon dioxide can trigger explosive eruptions.
Published Research reveals Hawai'i's undersea volcano, Kama'ehu, erupted five times in past 150 years



Kama?ehuakanaloa (formerly L??ihi Seamount), a submarine Hawaiian volcano located about 20 miles off the south coast of the Big Island of Hawai'i, has erupted at least five times in the last 150 years, according to new research led by Earth scientists at the University of Hawai'i at M?noa.
Published Current takes a surprising path in quantum material


Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.
Published Sensing and controlling microscopic spin density in materials


Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.
Published Quantum discovery: Materials can host D-wave effects with F-wave behaviors


In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.
Published Scientists create novel approach to control energy waves in 4D


Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.
Published When electrons slowly vanish during cooling


Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.
Published A new type of quantum bit in semiconductor nanostructures


Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published Lasering lava to forecast volcanic eruptions



Researchers have optimized a new technique to help forecast how volcanoes will behave, which could save lives and property around the world.