Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New method to control electron spin paves the way for efficient quantum computers      (via sciencedaily.com) 

Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits on strong stimulants      (via sciencedaily.com)     Original source 

In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Looking back at the Tonga eruption      (via sciencedaily.com) 

A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists make major nanoscopic advance      (via sciencedaily.com)     Original source 

In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: Quantum Computing
Published

No 'second law of entanglement' after all      (via sciencedaily.com) 

When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.

Biology: Microbiology Ecology: General Ecology: Research Geoscience: Geology Geoscience: Volcanoes
Published

Immense diversity and interdependence in high temp deep-sea microorganism communities      (via sciencedaily.com) 

A new study finds that microorganisms live in richly diverse and interdependent communities in high-temperature geothermal environments in the deep sea. By constructing genomes of 3,635 Bacteria and Archaea from 40 different rock communities, researchers discovered at least 500 new genera and have evidence for two new phyla. Samples from the deep-sea Brothers volcano were especially enriched with different kinds of microorganisms, many endemic to the volcano. The genomic data from this study also showed that many of these organisms depend on one another for survival. Some microorganisms cannot metabolize all of the nutrients they need to survive so they rely on nutrients created by other species in a process known as a 'metabolic handoff.'

Ecology: General Ecology: Research Geoscience: Geology Geoscience: Volcanoes
Published

Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes      (via sciencedaily.com) 

On the short-lived island of Hunga Tonga Hunga Ha'apai, researchers discovered a unique microbial community that metabolizes sulfur and atmospheric gases, similar to organisms found in deep sea vents or hot springs.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing
Published

Shedding light on quantum photonics      (via sciencedaily.com) 

As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing
Published

Can you trust your quantum simulator?      (via sciencedaily.com) 

Physicists have developed a protocol to verify the accuracy of quantum experiments.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Blast chiller for the quantum world      (via sciencedaily.com) 

The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

The optical fiber that keeps data safe even after being twisted or bent      (via sciencedaily.com) 

An optical fiber that uses the mathematical concept of topology to remain robust, thereby guaranteeing the high-speed transfer of information, has been created by physicists.

Computer Science: Quantum Computers
Published

The thermodynamics of quantum computing      (via sciencedaily.com) 

In research on quantum computers, one aspect that has been mostly neglected until now is the generation of heat. Physicists now focus their attention on heat as an interference factor -- and have developed a method to experimentally measure the heat generated by a superconducting quantum system.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

New quantum computing architecture could be used to connect large-scale devices      (via sciencedaily.com) 

Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Researchers show a new way to induce useful defects using invisible material properties      (via sciencedaily.com)     Original source 

Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.

Geoscience: Geology Geoscience: Volcanoes
Published

Predicting lava flow      (via sciencedaily.com) 

A team is collecting data that will be used to create models that can help improve lava flow forecasting tools that are useful in determining how hazards impact populations. One such tool, known as MOLASSES, is a simulation engine that forecasts inundation areas of lava flow.

Geoscience: Volcanoes
Published

Using drones to monitor volcanoes: Researchers analyze volcanic gases with the help of ultra-lightweight sensor systems      (via sciencedaily.com) 

The main gases released by volcanoes are water vapor, carbon dioxide, and sulfur dioxide. Analyzing these gases is one of the best ways of obtaining information on volcanic systems and the magmatic processes that are underway. The ratio of carbon dioxide levels to those of sulfur dioxide can even reveal the likelihood of an impending eruption. Drones are employed to carry the necessary analytical systems to the site of activity.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: Quantum Computing
Published

Chaos gives the quantum world a temperature      (via sciencedaily.com) 

Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.