Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Let there be (controlled) light      (via sciencedaily.com) 

In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.

Chemistry: Organic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theory can sort order from chaos in complex quantum systems      (via sciencedaily.com) 

Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The quantum twisting microscope: A new lens on quantum materials      (via sciencedaily.com) 

One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.

Geoscience: Earthquakes Geoscience: Geology
Published

Deep earthquakes could reveal secrets of the Earth's mantle      (via sciencedaily.com) 

A new study suggests there may be a layer of surprisingly fluid rock ringing the Earth, at the very bottom of the upper mantle.

Geoscience: Earthquakes Geoscience: Geology Paleontology: Climate
Published

Bouncing seismic waves reveal distinct layer in Earth's inner core      (via sciencedaily.com) 

Data captured from seismic waves caused by earthquakes has shed new light on the deepest parts of Earth's inner core, according to seismologists.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing technique reveals magnetic connections      (via sciencedaily.com) 

A research team demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.

Geoscience: Earthquakes Geoscience: Geology
Published

Earthquake scientists have a new tool in the race to find the next big one      (via sciencedaily.com) 

New research on friction between faults could aid in predicting the world's most powerful earthquakes. Researchers discovered that fault surfaces bond together, or heal, after an earthquake. A fault that is slow to heal is more likely to move harmlessly, while one that heals quickly is more likely to stick until it breaks in a large, damaging earthquake. Tests allowed them to calculate a slow, harmless type of tremor. The discovery alone won't allow scientists to predict when the next big one will strike but it does give researchers a valuable new way to investigate the causes and potential for a large, damaging earthquake to happen, and guide efforts to monitor large faults like Cascadia in the Pacific Northwest.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Securing supply chains with quantum computing      (via sciencedaily.com) 

New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.

Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

When the light is neither 'on' nor 'off' in the nanoworld      (via sciencedaily.com) 

Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail never-before-seen properties in a family of superconducting Kagome metals      (via sciencedaily.com) 

Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists boost quantum signals while reducing noise      (via sciencedaily.com) 

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Exact magma locations may improve volcanic eruption forecasts      (via sciencedaily.com) 

Cornell University researchers have unearthed precise, microscopic clues to where magma is stored, offering a way to better assess the risk of volcanic eruptions.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Geoscience: Earthquakes Geoscience: Geology
Published

Scientists detect molten rock layer hidden under Earth's tectonic plates      (via sciencedaily.com) 

Scientists have discovered a new layer of partly molten rock under the Earth's crust that might help settle a long-standing debate about how tectonic plates move. The molten layer is located about 100 miles from the surface and is part of the asthenosphere, which is important for plate tectonics because it forms a relatively soft boundary that lets tectonic plates move through the mantle. The researchers found, however that the melt does not appear to notably influence the flow of mantle rocks. Instead, they say, the discovery confirms that the convection of heat and rock in the mantle are the prevailing influence on the motion of the plates.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New method to control electron spin paves the way for efficient quantum computers      (via sciencedaily.com) 

Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.