Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Geoscience: Earthquakes
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published Scientists tune the entanglement structure in an array of qubits



A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published Lead-vacancy centers in diamond as building blocks for large-scale quantum networks



A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published Compact quantum light processing



An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.
Published Scientists trigger mini-earthquakes in the lab



Earthquakes and landslides are famously difficult to predict and prepare for. By studying a miniature version of the ground in the lab, scientists have demonstrated how these events can be triggered by a small external shock wave. Bring a flotation device: it involves the ground briefly turning into a liquid!
Published Crucial connection for 'quantum internet' made for the first time



Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.
Published Quantum precision: A new kind of resistor



Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.
Published Rock permeability, microquakes link may be a boon for geothermal energy



Using machine learning, researchers have tied low-magnitude microearthquakes to the permeability of subsurface rocks beneath the Earth, a discovery that could have implications for improving geothermal energy transfer.
Published Breakthrough promises secure quantum computing at home



The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing.
Published Quantum breakthrough when light makes materials magnetic



The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.
Published New method of measuring qubits promises ease of scalability in a microscopic package



The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Published Will the convergence of light and matter in Janus particles transcend performance limitations in the optical display industry?



Team successfully exerted electrical control over polaritons, hybridized light-matter particles, at room temperature.
Published Chemical reactions can scramble quantum information as well as black holes



A team of researchers has shown that molecules can be as formidable at scrambling quantum information as black holes by combining mathematical tools from black hole physics and chemical physics and testing their theory in chemical reactions.
Published Progress in quantum physics: Researchers tame superconductors



An international team including researchers from the University of W rzburg has succeeded in creating a special state of superconductivity. This discovery could advance the development of quantum computers.
Published 100 kilometers of quantum-encrypted transfer



Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.