Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hotter quantum systems can cool faster than initially colder equivalents      (via sciencedaily.com) 

The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Space: Exploration Space: General
Published

How being in space impairs astronauts' immune system      (via sciencedaily.com)     Original source 

A new study has examined how T cells of the immune system are affected by weightlessness. The results could explain why astronauts' T cells become less active and less effective at fighting infection.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Mysterious Neptune dark spot detected from Earth for the first time      (via sciencedaily.com) 

Using ESO's Very Large Telescope (VLT), astronomers have observed a large dark spot in Neptune's atmosphere, with an unexpected smaller bright spot adjacent to it. This is the first time a dark spot on the planet has ever been observed with a telescope on Earth. These occasional features in the blue background of Neptune's atmosphere are a mystery to astronomers, and the new results provide further clues as to their nature and origin.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Do measurements produce the reality they show us?      (via sciencedaily.com) 

The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Rewriting the past and future of the universe      (via sciencedaily.com)     Original source 

New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New type of star gives clues to mysterious origin of magnetars      (via sciencedaily.com)     Original source 

Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Hundred-year storms? That's how long they last on Saturn      (via sciencedaily.com) 

Megastorms regularly appear on Saturn, marring the relatively bland surface before disappearing. But radio observations show that the storms have long-lasting effects deeper in the atmosphere, in particular in the distribution of ammonia. Using NRAO's Very Large Array, astronomers see such impacts from storms that happened hundreds of years ago. The findings will help explain the differences between storms on the gas giants Saturn and Jupiter.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

After seventeen years, a spacecraft makes its first visit home      (via sciencedaily.com) 

On Aug. 12, 2023, NASA's STEREO-A spacecraft will pass between the Sun and Earth, marking the first Earth flyby of the nearly 17-year-old mission. The visit home brings a special chance for the spacecraft to collaborate with NASA missions near Earth and reveal new insights into our closest star.

Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Possible seasonal climate patterns on early Mars      (via sciencedaily.com)     Original source 

New observations of mud cracks made by the Curiosity Rover show that high-frequency, wet-dry cycling occurred in early Martian surface environments, indicating that the red planet may have once seen seasonal weather patterns or even flash floods.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb reveals colors of Earendel, most distant star ever detected      (via sciencedaily.com) 

NASA's James Webb Space Telescope has followed up on observations by the Hubble Space Telescope of the farthest star ever detected in the very distant universe, within the first billion years after the big bang. Webb's NIRCam (Near-Infrared Camera) instrument reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.

Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Chemical contamination on International Space Station is out of this world      (via sciencedaily.com)     Original source 

Concentrations of potentially harmful chemical compounds in dust collected from air filtration systems on the International Space Station (ISS) exceed those found in floor dust from many American homes, a new study reveals.