Showing 20 articles starting at article 861
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Space: Exploration
Published New research computes first step toward predicting lifespan of electric space propulsion systems



Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.
Published Researchers take a step toward novel quantum simulators


If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.
Published Scientists release newly accurate map of all the matter in the universe


A group of scientists have released one of the most precise measurements ever made of how matter is distributed across the universe today.
Published Researchers complete first real-world study of Martian helicopter dust dynamics


Researchers have completed the first real-world study of Martian dust dynamics based on Ingenuity's historic first flights on the Red Planet, paving the way for future extraterrestrial rotorcraft missions. The work could support NASA's Mars Sample Return Program, which will retrieve samples collected by Perseverance, or the Dragonfly mission that will set course for Titan, Saturn's largest moon, in 2027.
Published New method to control electron spin paves the way for efficient quantum computers


Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.
Published Will machine learning help us find extraterrestrial life?


Researchers have applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.
Published Volcano-like rupture could have caused magnetar slowdown


In October 2020, a highly magnetic neutron star called SGR 1935+2154 abruptly began spinning more slowly. Astrophysicist now show the magnetar's rotational slowdown could have been caused by a volcano-like rupture near its magnetic pole.
Published Qubits on strong stimulants



In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.
Published Starry tail tells the tale of dwarf galaxy evolution


A giant diffuse tail of stars has been discovered emanating from a large, faint dwarf galaxy. The presence of a tail indicates that the galaxy has experienced recent interaction with another galaxy. This is an important clue for understanding how so called 'ultra-diffuse' galaxies are formed.
Published Quantum physicists make major nanoscopic advance



In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published NASA's Fermi detects first gamma-ray eclipses from 'spider' star systems


Scientists have discovered the first gamma-ray eclipses from a special type of binary star system using data from NASA's Fermi Gamma-ray Space Telescope. These so-called spider systems each contain a pulsar -- the superdense, rapidly rotating remains of a star that exploded in a supernova -- that slowly erodes its companion.
Published Webb spies Chariklo ring system with high-precision technique


In an observational feat of high precision, scientists used a new technique with NASA's James Webb Space Telescope to capture the shadows of starlight cast by the thin rings of Chariklo. Chariklo is an icy, small body, but the largest of the known Centaur population, located more than 2 billion miles away beyond the orbit of Saturn.
Published Were galaxies much different in the early universe?


The most sensitive telescope now searching for radio signals from cosmic dawn, an era around 200 million years after the Big Bang when stars ignited, has doubled its sensitivity, a new paper reports. While not yet detecting this radiation -- the redshifted 21-centimeter line -- they have put new limits on the elemental composition of galaxies during the Epoch of Reionization. Early galaxies seem to be low in metals, fitting the most popular theory of cosmic evolution.
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published How a 3 cm glass sphere could help scientists understand space weather


Space weather can interfere with spaceflight and the operation of satellites, but the phenomenon is very difficult to study on Earth because of the difference in gravity. Researchers effectively reproduced the type of gravity that exists on or near stars and other planets inside of a glass sphere measuring 3 centimeters in diameter, or about 1.2 inches. The achievement could help scientists overcome the limiting role of gravity in experiments that are intended to model conditions in stars and other planets.
Published Darkest view ever of interstellar ice



Astronomers used observations from the James Webb Space Telescope (JWST) to achieve the darkest ever view of a dense interstellar cloud. These observations have revealed the composition of a virtual treasure chest of ices from the early universe, providing new insights into the chemical processes of one of the coldest, darkest places in the universe as well as the origins of the molecules that make up planetary atmospheres.
Published Massive fuel-hungry black holes feed off intergalactic gas


Research has revealed how supermassive black holes (SMBHs) are feeding off gas clouds which reach them by traveling hundreds of thousands of light years from one galaxy to another.
Published Shedding light on quantum photonics


As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications.
Published Billions of celestial objects revealed in gargantuan survey of the Milky Way



Astronomers have released a gargantuan survey of the galactic plane of the Milky Way. The new dataset contains a staggering 3.32 billion celestial objects -- arguably the largest such catalog so far. The data for this unprecedented survey were taken with the Dark Energy Camera.