Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum breakthrough when light makes materials magnetic      (via sciencedaily.com)     Original source 

The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New method of measuring qubits promises ease of scalability in a microscopic package      (via sciencedaily.com)     Original source 

The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique lets scientists create resistance-free electron channels      (via sciencedaily.com)     Original source 

A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Chemical reactions can scramble quantum information as well as black holes      (via sciencedaily.com)     Original source 

A team of researchers has shown that molecules can be as formidable at scrambling quantum information as black holes by combining mathematical tools from black hole physics and chemical physics and testing their theory in chemical reactions.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Progress in quantum physics: Researchers tame superconductors      (via sciencedaily.com)     Original source 

An international team including researchers from the University of W rzburg has succeeded in creating a special state of superconductivity. This discovery could advance the development of quantum computers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology
Published

'Tug of war' tactic enhances chemical separations for critical materials      (via sciencedaily.com)     Original source 

Lanthanide elements are important for clean energy and other applications. To use them, industry must separate mixed lanthanide sources into individual elements using costly, time-consuming, and waste-generating procedures. An efficient new method can be tailored to select specific lanthanides. The technique combines two substances that do not mix and that prefer different types of lanthanides. The process would allow for smaller equipment, less use of chemicals, and less waste production.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Paleontology: General
Published

New step in tectonic squeeze that turns seafloor into mountains      (via sciencedaily.com)     Original source 

Researchers describe zircons from the Andes mountains of Patagonia. Although the zircons formed when tectonic plates were colliding, they have a chemical signature associated with when the plates were moving apart. The researchers think that the unexpected signature could be explained by the mechanics of underlying tectonic plates that hasn't yet been described in other models.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

100 kilometers of quantum-encrypted transfer      (via sciencedaily.com)     Original source 

Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of cooling for quantum simulators      (via sciencedaily.com)     Original source 

Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Bullseye! Accurately centering quantum dots within photonic chips      (via sciencedaily.com)     Original source 

Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Computer Science: General Computer Science: Quantum Computers
Published

Novel quantum algorithm for high-quality solutions to combinatorial optimization problems      (via sciencedaily.com)     Original source 

Conventional quantum algorithms are not feasible for solving combinatorial optimization problems (COPs) with constraints in the operation time of quantum computers. To address this issue, researchers have developed a novel algorithm called post-processing variationally scheduled quantum algorithm. The novelty of this innovative algorithm lies in the use of a post-processing technique combined with variational scheduling to achieve high-quality solutions to COPs in a short time.

Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Paleontology: Fossils
Published

New geological study: Scandinavia was born in Greenland      (via sciencedaily.com)     Original source 

The oldest Scandinavian bedrock was 'born' in Greenland, according to a new geological study. The study helps us understand the origin of continents and why Earth is the only planet in our solar system with life.

Computer Science: General Computer Science: Quantum Computers
Published

Verifying the work of quantum computers      (via sciencedaily.com)     Original source 

Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

From the Mediterranean into the Atlantic: The Gibraltar arc is migrating to the west      (via sciencedaily.com)     Original source 

Oceans are subject to continuous change, mostly over extremely vast periods of time running into millions of years. Researchers have now used computer simulations to demonstrate that a subduction zone originating in the Western Mediterranean will propagate into the Atlantic under the Strait of Gibraltar. According to their model, this will create a new Atlantic subduction zone 50 million years into the future, which will then move down into the Earth's mantle. The new geodynamic model explains the evolution of the Gibraltar subduction zone and its likely development, which will contribute to the renewal of the Atlantic Ocean floor.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology Geoscience: Oceanography
Published

Harnessing hydrogen at life's origin      (via sciencedaily.com)     Original source 

A new report uncovers how hydrogen gas, the energy of the future, provided energy in the past, at the origin of life 4 billion years ago. Hydrogen gas is clean fuel. It burns with oxygen in the air to provide energy with no CO2. Hydrogen is a key to sustainable energy for the future. Though humans are just now coming to realize the benefits of hydrogen gas (H2 in chemical shorthand), microbes have known that H2 is good fuel for as long as there has been life on Earth. Hydrogen is ancient energy.