Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Experiment could test quantum nature of large masses for the first time      (via sciencedaily.com)     Original source 

A new experiment could in principle test the quantumness of an object regardless of its mass or energy.

Chemistry: Biochemistry Computer Science: Quantum Computers Energy: Nuclear Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Solid-state qubits: Forget about being clean, embrace mess      (via sciencedaily.com)     Original source 

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Molecular Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology
Published

Study uncovers potential origins of life in ancient hot springs      (via sciencedaily.com)     Original source 

A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First direct imaging of small noble gas clusters at room temperature      (via sciencedaily.com)     Original source 

Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Environmental: General Geoscience: Earth Science Geoscience: Geography Geoscience: Geology Offbeat: Earth and Climate Offbeat: General
Published

From NYC to DC and beyond, cities on the East Coast are sinking      (via sciencedaily.com)     Original source 

Major cities on the U.S. Atlantic coast are sinking, in some cases as much as 5 millimeters per year -- a decline at the ocean's edge that well outpaces global sea level rise, confirms new research. Particularly hard hit population centers such as New York City and Long Island, Baltimore, and Virginia Beach and Norfolk are seeing areas of rapid 'subsidence,' or sinking land, alongside more slowly sinking or relatively stable ground, increasing the risk to roadways, runways, building foundations, rail lines, and pipelines, according to a new study.

Anthropology: Cultures Archaeology: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geology Paleontology: Fossils
Published

Mesopotamian bricks unveil the strength of Earth's ancient magnetic field      (via sciencedaily.com)     Original source 

Ancient bricks inscribed with the names of Mesopotamian kings have yielded important insights into a mysterious anomaly in Earth's magnetic field 3,000 years ago, according to a new study.

Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geology Space: Astrophysics Space: General Space: The Solar System
Published

Exoplanets' climate -- it takes nothing to switch from habitable to hell      (via sciencedaily.com)     Original source 

The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.

Environmental: Water Geoscience: Earth Science Geoscience: Geography Geoscience: Geology
Published

Drones capture new clues about how water shapes mountain ranges over time      (via sciencedaily.com)     Original source 

Drones flying along miles of rivers in the steep, mountainous terrain of central Taiwan and mapping the rock properties have revealed new clues about how water helps shape mountains over geological time.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology
Published

New geophysical technique enhances imaging of fluid-filled rocks finding connections with microearthquakes      (via sciencedaily.com)     Original source 

Scientists have recently introduced a new method called ambient noise differential adjoint tomography, which allows researchers to visualise rocks with fluids better, leading to potential advancements in the discovery of water and oil resources, as well as applications in urban geologic hazard and early warning systems for tsunamis and the understanding of the water cycle.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's first logical quantum processor      (via sciencedaily.com)     Original source 

A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.