Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Geoscience: Geology
Published The importance of the Earth's atmosphere in creating the large storms that affect satellite communications



Large geomagnetic storms disrupt radio signals and GPS. Now, researchers have identified the previous underestimated role of the ionosphere, a region of Earth's upper atmosphere that contains a high concentration of ions and free electrons, in determining how such storms develop. Understanding the interactions that cause large geomagnetic storms is important because they can disrupt radio signals and GPS. Their findings may help predict storms with the greatest potential consequences.
Published Alpine rock reveals dynamics of plate movements in Earth's interior



Examining how plates move in Earth's mantle and how mountains form is no easy feat. Certain rocks that have sunk deep into Earth's interior and then returned from there can deliver answers.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit



Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.
Published Mystery of volcanic tsunami solved after 373 years



The explosion of the underwater volcano Kolumbo in the Aegean Sea in 1650 triggered a destructive tsunami that was described by historical eye witnesses. A group of researchers has now surveyed Kolumbo's underwater crater with modern imaging technology and reconstructed the historical events. They found that the eyewitness accounts of the natural disaster can only be described by a combination of a landslide followed by an explosive eruption.
Published Venus had Earth-like plate tectonics billions of years ago, study suggests



Venus, may have once had tectonic plate movements similar to those believed to have occurred on early Earth, a new study found. The finding sets up tantalizing scenarios regarding the possibility of early life on Venus, its evolutionary past and the history of the solar system.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Superdeep diamonds provide a window on supercontinent growth



Diamonds contain evidence of the mantle rocks that helped buoy and grow the ancient supercontinent Gondwana from below, according to new research. These findings demonstrate that superdeep diamonds can provide a window through space and time into the supercontinent growth and formation process.
Published Researchers probe molten rock to crack Earth's deepest secrets



An international team re-created molten rock conditions deep within the Earth and measured the spin states of iron atoms within that rock melt. An iron atom's spin state drives its magnetic behavior and reactivity in chemical reactions, and can influence whether iron prefers to be in the molten or solid rock.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published California supervolcano is cooling off but may still cause quakes



New high-resolution images of the Long Valley Caldera indicate that the subsurface environment is cooling off, releasing gas and fluids that contribute to seismic activity.
Published Ancient diamonds shine light on the evolution of Earth



Formed millions to billions of years ago, diamonds can shine light into the darkest and oldest parts of the Earth's mantle. The analysis of ancient, superdeep diamonds dug up from mines in Brazil and Western Africa, has exposed new processes of how continents evolved and moved during the early evolution of complex life on Earth. These diamonds that were formed between 650 and 450 million years ago on the base of the supercontinent Gondwana, were analysed by an international team of experts, and have shown how supercontinents such as Gondwana were formed, stabilised, and how they move around the planet.
Published Ice sheet surface melt is accelerating in Greenland and slowing in Antarctica



Surface ice in Greenland has been melting at an increasing rate in recent decades, while the trend in Antarctica has moved in the opposite direction, according to researchers.
Published Self-correcting quantum computers within reach?



Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.
Published Exploring parameter shift for quantum fisher information



Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.
Published A new way to erase quantum computer errors



Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors.
Published Plate tectonic surprise: Geologist unexpectedly finds remnants of a lost mega-plate



Geologists have reconstructed a massive and previously unknown tectonic plate that was once one-quarter the size of the Pacific Ocean. The team had predicted its existence over 10 years ago based on fragments of old tectonic plates found deep in the Earth’s mantle. To the lead researchers surprise, she found that oceanic remnants on northern Borneo must have belonged to the long-suspected plate, which scientists have named Pontus. She has now reconstructed the entire plate in its full glory.
Published Climate change brings earlier arrival of intense hurricanes



New research has revealed that since the 1980s, Category 4 and 5 hurricanes (maximum wind speed greater than 131 miles per hour) have been arriving three to four days earlier with each passing decade of climate change.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.