Computer Science: General Computer Science: Quantum Computers
Published

Quantum tool opens door to uncharted phenomena      (via sciencedaily.com)     Original source 

Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Keep it secret: Cloud data storage security approach taps quantum physics      (via sciencedaily.com)     Original source 

Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.

Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

New study reveals surprising insights into feeding habits of carnivorous dinosaurs in North America      (via sciencedaily.com)     Original source 

New research sheds light on the dining habits of ancient carnivorous dinosaurs from Jurassic rocks of the USA. A recent study explores the bite marks left on the ancient bones of the giant long-necked sauropod dinosaurs like Diplodocus and Brontosaurus by carnivorous theropod dinosaurs.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What a '2D' quantum superfluid feels like to the touch      (via sciencedaily.com)     Original source 

Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.

Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing      (via sciencedaily.com)     Original source 

Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Computer Science: Quantum Computers
Published

New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit      (via sciencedaily.com)     Original source 

Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Computer Science: General Computer Science: Quantum Computers
Published

Self-correcting quantum computers within reach?      (via sciencedaily.com)     Original source 

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.

Computer Science: General Computer Science: Quantum Computers
Published

Exploring parameter shift for quantum fisher information      (via sciencedaily.com)     Original source 

Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.

Computer Science: General Computer Science: Quantum Computers
Published

A new way to erase quantum computer errors      (via sciencedaily.com)     Original source 

Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors. 

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Biology: Botany Biology: Evolutionary Biology: General Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Nature Ecology: Trees Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: General
Published

Survival of the newest: the mammals that survive mass extinctions aren't as 'boring' as scientists thought      (via sciencedaily.com)     Original source 

For decades, scientists have assumed that mammals and their relatives that survived challenging times (like those during mass extinctions) made it because they were generalists that were able to eat just about anything and adapt to whatever life threw at them. A new study into the mammal family tree through multiple mass extinctions revealed that the species that survived aren't as generic as scientists had thought: instead, having new and different traits can be the key to succeeding in the aftermath of a catastrophe.

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.