Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Researchers discover hidden step in dinosaur feather evolution      (via sciencedaily.com)     Original source 

Scientists discover 'zoned development' in dinosaur skin, with zones of reptile-style scales and zones of bird-like skin with feathers. A new dinosaur skin fossil has been found to be composed of silica -- the same as glass.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

2D materials: A catalyst for future quantum technologies      (via sciencedaily.com)     Original source 

Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.

Anthropology: General Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Diverse headgear in hoofed mammals evolved from common ancestor      (via sciencedaily.com)     Original source 

From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's smallest quantum light detector on a silicon chip      (via sciencedaily.com)     Original source 

Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.

Computer Science: Quantum Computers Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

Wavefunction matching for solving quantum many-body problems      (via sciencedaily.com)     Original source 

Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simple quantum internet with significant possibilities      (via sciencedaily.com)     Original source 

It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.

Biology: Biochemistry Ecology: Extinction Ecology: Nature Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: General
Published

First 'warm-blooded' dinosaurs may have emerged 180 million years ago      (via sciencedaily.com)     Original source 

The ability to regulate body temperature, a trait all mammals and birds have today, may have evolved among some dinosaurs early in the Jurassic period about 180 million years ago. The new study looked at the spread of dinosaurs across different climates on Earth throughout the Mesozoic Era (the dinosaur era lasting from 230 to 66 million years ago), drawing on 1,000 fossils, climate models and the geography of the period, and dinosaurs' evolutionary trees.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Speedy, secure, sustainable -- that's the future of telecom      (via sciencedaily.com)     Original source 

A new device that can process information using a small amount of light could enable energy-efficient and secure communications.

Computer Science: General Computer Science: Quantum Computers
Published

New super-pure silicon chip opens path to powerful quantum computers      (via sciencedaily.com)     Original source 

Researchers have invented a breakthrough technique for manufacturing highly purified silicon that brings powerful quantum computers a big step closer.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment opens door for millions of qubits on one chip      (via sciencedaily.com)     Original source 

Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques      (via sciencedaily.com)     Original source 

Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists arrange atoms in extremely close proximity      (via sciencedaily.com)     Original source 

Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists test for quantum nature of gravity      (via sciencedaily.com)     Original source 

A new study reports on a deep new probe into the interface between the theories of gravity and quantum mechanics, using ultra-high energy neutrino particles detected by a particle detector set deep into the Antarctic glacier at the south pole.

Anthropology: General Biology: Zoology Ecology: Extinction Ecology: Nature Paleontology: Early Mammals and Birds
Published

Feathers, cognition and global consumerism in colonial Amazonia      (via sciencedaily.com)     Original source 

Amazonia is the home of the largest variety of birds in the world. In such a unique environment, craft cultures have flourished by translating the beauty and creativity of environmental materials like feathers into stunning pieces of art. A new article examines artisanal featherwork within the context of early modern colonialism and globalization.

Computer Science: General Computer Science: Quantum Computers
Published

Physicists build new device that is foundation for quantum computing      (via sciencedaily.com)     Original source 

Scientists have adapted a device called a microwave circulator for use in quantum computers, allowing them for the first time to precisely tune the exact degree of nonreciprocity between a qubit, the fundamental unit of quantum computing, and a microwave-resonant cavity. The ability to precisely tune the degree of nonreciprocity is an important tool to have in quantum information processing. In doing so, the team derived a general and widely applicable theory that simplifies and expands upon older understandings of nonreciprocity so that future work on similar topics can take advantage of the team's model, even when using different components and platforms.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers unlock potential of 2D magnetic devices for future computing      (via sciencedaily.com)     Original source 

A research team has created an innovative method to control tiny magnetic states within ultrathin, two-dimensional van der Waals magnets -- a process akin to how flipping a light switch controls a bulb.

Computer Science: Quantum Computers
Published

Scientists show that there is indeed an 'entropy' of quantum entanglement      (via sciencedaily.com)     Original source 

Scientists have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of 'entropy' for the phenomenon of quantum entanglement. This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers.

Computer Science: Quantum Computers Mathematics: General Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The end of the quantum tunnel      (via sciencedaily.com)     Original source 

Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.