Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Unraveling the mysteries of fog in complex terrain      (via sciencedaily.com)     Original source 

While fog presents a major hazard to transportation safety, meteorologists have yet to figure out how to forecast it with the precision they have achieved for precipitation, wind and other stormy events. This is because the physical processes resulting in fog formation are extremely complex, Now researchers report their findings from an intensive study centered on a northern Utah basin and conceived to investigate the life cycle of cold fog in mountain valleys.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices      (via sciencedaily.com)     Original source 

A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Molecules exhibit non-reciprocal interactions without external forces      (via sciencedaily.com)     Original source 

Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Novel catalyst system for CO2 conversion      (via sciencedaily.com)     Original source 

Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New strategy reveals 'full chemical complexity' of quantum decoherence      (via sciencedaily.com)     Original source 

Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Scientists tackle difficult-to-recycle thermoset polymers      (via sciencedaily.com)     Original source 

A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

For this emergent class of materials, 'solutions are the problem'      (via sciencedaily.com)     Original source 

Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Upcycling leftover cardboard to make a new type of foam packaging      (via sciencedaily.com)     Original source 

With the holiday season in full swing, gifts of all shapes and sizes are being shipped around the world. But all that packaging generates lots of waste, including cardboard boxes and plastic-based foam cushioning. Rather than discard those boxes, researchers have developed a cushioning foam from cardboard waste. Their upcycled material was stronger and more insulating than traditional, plastic foam-based cushioning.

Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Resource-efficient and climate-friendly with sodium-ion batteries      (via sciencedaily.com)     Original source 

The transition to a society without fossil fuels means that the need for batteries is increasing at a rapid pace. At the same time, the increase will mean a shortage of the metals lithium and cobalt, which are key components in the most common battery types. One option is a sodium-ion battery, where table salt and biomass from the forest industry make up the main raw materials. Now, researchers show that these sodium-ion batteries have an equivalent climate impact as their lithium-ion counterparts -- without the risk of running out of raw materials. 

Chemistry: General Ecology: Nature Energy: Alternative Fuels Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

The solar forest      (via sciencedaily.com)     Original source 

What would be the most effective use of a certain plot of land in terms of the climate crisis: planting a forest, which is a natural means of absorbing carbon dioxide from the atmosphere, or erecting fields of solar panels, which reduce the emission of carbon dioxide into the atmosphere? This dilemma has long been debated by decision-makers around the world. Now, for the first time -- based on findings from arid areas and on comprehensive measurements of the energy flow exchanged between the ground and the atmosphere -- we may have an answer to this question.  

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Spinning up control: Propeller shape helps direct nanoparticles      (via sciencedaily.com)     Original source 

Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.

Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

Single-use e-cigarettes contain batteries that last hundreds of cycles despite being discarded      (via sciencedaily.com)     Original source 

While the lithium-ion batteries in disposable electronic cigarettes are discarded after a single use, they can continue to perform at high capacity for hundreds of cycles, according to a new study. The analysis highlights a growing environmental threat from these increasingly popular vape pens, which are not designed to be recharged.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Eco-friendly technologies for plastic production and biodegradation?      (via sciencedaily.com)     Original source 

A new article covering an overview and trends of plastic production and degradation technology using microorganisms has been published. Eco-friendly and sustainable plastic production and degradation technology using microorganisms as a core technology to achieve a plastic circular economy was presented.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Polyethylene waste could be a thing of the past      (via sciencedaily.com)     Original source 

Experts have developed a way of using polyethylene waste (PE) as a feedstock and converted it into valuable chemicals, via light-driven photocatalysis. PE is the most widely used plastic in the world including for daily food packaging, shopping bags and reagent bottles, and the researchers say that while recycling of PE is still in early development, it could be an untapped resource for re-use.