Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Tackling industrial emissions begins at the chemical reaction      (via sciencedaily.com)     Original source 

Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Spin qubits go trampolining      (via sciencedaily.com)     Original source 

Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Researchers discover faster, more energy-efficient way to manufacture an industrially important chemical      (via sciencedaily.com)     Original source 

The reactivity of zirconium on silicon nitride enhances the conversion of propane into propylene, a key commodity chemical needed to make polypropylene. This finding hints at the reactivity researchers might achieve with other nontraditional catalysts.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers develop innovative battery recycling method      (via sciencedaily.com)     Original source 

A research team is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

A single-molecule-based organic porous material with great potential for efficient ammonia storage      (via sciencedaily.com)     Original source 

Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers develop more environmentally friendly and cost-effective method for soil remediation      (via sciencedaily.com)     Original source 

Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.

Archaeology: General Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Paleontology: Fossils Paleontology: General
Published

Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones      (via sciencedaily.com)     Original source 

A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.

Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Physics: General
Published

3D-printed microstructure forest facilitates solar steam generator desalination      (via sciencedaily.com)     Original source 

Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.

Biology: Microbiology Chemistry: Biochemistry Chemistry: General
Published

Pioneering the cellular frontier      (via sciencedaily.com)     Original source 

Scientists use a multimodal approach that combines hard X-ray computed tomography and X-ray fluorescence imaging to see the structure and chemical processes inside of a single cell.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

A promising new method uses light to clean up forever chemicals      (via sciencedaily.com)     Original source 

A room-temperature method to decompose perfluoroalkyl substances (PFASs) using visible LED light offers a promising solution for sustainable fluorine recycling and PFAS treatment.

Chemistry: Biochemistry Chemistry: General Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Converting captured carbon to fuel: Study assesses what's practical and what's not      (via sciencedaily.com)     Original source 

A new analysis sheds light on major shortfalls of a recently proposed approach to capture CO2 from air and directly convert it to fuel using electricity. The authors also provide a new, more sustainable, alternative.

Chemistry: General
Published

Switching from gas to electric stoves cuts indoor air pollution      (via sciencedaily.com)     Original source 

Switching from a gas stove to an electric induction stove can reduce indoor nitrogen dioxide air pollution, a known health hazard, by more than 50 percent according to new research.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Organs on demand? Scientists print voxel building blocks      (via sciencedaily.com)     Original source 

Scientists are bioprinting 3D structures with a material that is a close match for human tissue, paving the way for true biomanufacturing.

Chemistry: General Chemistry: Thermodynamics Physics: Optics
Published

3D printing of light-activated hydrogel actuators      (via sciencedaily.com)     Original source 

An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Waste Styrofoam can now be converted into polymers for electronics      (via sciencedaily.com)     Original source 

A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.

Chemistry: General Energy: Alternative Fuels
Published

'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells      (via sciencedaily.com)     Original source 

Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Converting wastewater to fertilizer with fungal treatment      (via sciencedaily.com)     Original source 

Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.