Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Offbeat: Space
Published Research group detects a quantum entanglement wave for the first time using real-space measurements


A team has created an artificial quantum magnet featuring a quasiparticle made of entangled electrons, the triplon.
Published Scientists develop fermionic quantum processor


Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.
Published Quantum physicists simulate super diffusion on a quantum computer


Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.
Published New type of star gives clues to mysterious origin of magnetars



Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.
Published Switching 'spin' on and off (and up and down) in quantum materials at room temperature


Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.
Published Using supernovae to study neutrinos' strange properties


In a new study, researchers have taken an important step toward understanding how exploding stars can help reveal how neutrinos, mysterious subatomic particles, secretly interact with themselves.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Hundred-year storms? That's how long they last on Saturn


Megastorms regularly appear on Saturn, marring the relatively bland surface before disappearing. But radio observations show that the storms have long-lasting effects deeper in the atmosphere, in particular in the distribution of ammonia. Using NRAO's Very Large Array, astronomers see such impacts from storms that happened hundreds of years ago. The findings will help explain the differences between storms on the gas giants Saturn and Jupiter.
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Possible seasonal climate patterns on early Mars



New observations of mud cracks made by the Curiosity Rover show that high-frequency, wet-dry cycling occurred in early Martian surface environments, indicating that the red planet may have once seen seasonal weather patterns or even flash floods.
Published Physicists demonstrate how sound can be transmitted through vacuum



A classic movie was once promoted with the punchline: 'In space, no one can hear you scream'. Physicists have now demonstrated, to the contrary, that in certain situations sound can be transmitted strongly across a vacuum region!
Published Chemical contamination on International Space Station is out of this world



Concentrations of potentially harmful chemical compounds in dust collected from air filtration systems on the International Space Station (ISS) exceed those found in floor dust from many American homes, a new study reveals.
Published Quantum material exhibits 'non-local' behavior that mimics brain function


New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Current takes a surprising path in quantum material


Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.
Published Sensing and controlling microscopic spin density in materials


Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.
Published Quantum discovery: Materials can host D-wave effects with F-wave behaviors


In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.
Published Gravitational arcs in 'El Gordo' galaxy cluster


A new image of the galaxy cluster known as 'El Gordo' is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.
Published Sun 'umbrella' tethered to asteroid might help mitigate climate change



Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.
Published Scientists create novel approach to control energy waves in 4D


Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.
Published When electrons slowly vanish during cooling


Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.