Showing 20 articles starting at article 581
Categories: Computer Science: Quantum Computers, Offbeat: Earth and Climate
Published An exotic interplay of electrons


Water that simply will not freeze, no matter how cold it gets -- a research group has discovered a quantum state that could be described in this way. Experts have managed to cool a special material to near absolute zero temperature. They found that a central property of atoms -- their alignment -- did not 'freeze', as usual, but remained in a 'liquid' state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors.
Published Flowers show their true colors


A plant common to Japan, Causonis japonica, is the first to show a newly discovered trait. Its flowers can change color depending on the stage of its maturation cycle, and then change back to its original color. Although many flowers have been shown to change color depending on their maturation phase, Causonis japonica is the only known example of bidirectional color change. The pigments involved in the colors are related to nutrient-rich colorful vegetables, so understanding the flowers' color-changing tricks could have downstream applications in improving nutrient yields in certain food crops.
Published Physicists observe wormhole dynamics using a quantum computer



Scientists have developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole.
Published Pulses driven by artificial intelligence tame quantum systems



Machine learning drives self-discovery of pulses that stabilize quantum systems in the face of environmental noise.
Published Fossil overturns more than a century of knowledge about the origin of modern birds


Fossilized fragments of a skeleton, hidden within a rock the size of a grapefruit, have helped upend one of the longest-standing assumptions about the origins of modern birds.
Published New quantum computing feat is a modern twist on a 150-year-old thought experiment


New research demonstrates a 20x improvement in resetting a quantum bit to its '0' state, using a modern version of the 'Maxwell's demon'.
Published Quantum algorithm of the direct calculation of energy derivatives developed for molecular geometry optimization


Researchers have successfully extended the quantum phase difference estimation algorithm, a general quantum algorithm for the direct calculations of energy gaps, to enable the direct calculation of energy differences between two different molecular geometries. This allows for the computation, based on the finite difference method, of energy derivatives with respect to nuclear coordinates in a single calculation.
Published A waste windfall: New process shows promise turning plastic trash into pharmaceuticals



Researchers have devised a method to transform post-consumer mixed plastics that wash up on beaches into a variety of valuable products.
Published The entanglement advantage


Researchers have demonstrated a way to entangle atoms to create a network of atomic clocks and accelerometers. The method has resulted in greater precision in measuring time and acceleration.
Published DNA sequence enhances understanding origins of jaws


Researchers have discovered and characterized a DNA sequence found in jawed vertebrates, such as sharks and humans, but absent in jawless vertebrates, such as lampreys. This DNA is important for the shaping of the joint surfaces during embryo development.
Published Ancient superpredator got big by front-loading its growth in its youth



Whatcheeria, a six-foot-long salamander-like creature that lived 340 million years ago, was the T. rex of its time: the biggest, baddest predator in its habitat. A new study reveals how they grew to their 'giant' size: instead of growing slow and steady throughout their lives like many modern reptiles and amphibians, they did most of their growing when they were young.
Published Achieving a quantum fiber


Researchers have successfully demonstrated the transport of two-photon quantum states of light through a phase-separated Anderson localization optical fiber.
Published Spin correlation between paired electrons demonstrated



Physicists have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots.
Published Quantum algorithms save time in the calculation of electron dynamics


Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team has succeeded in calculating the electron orbitals and their dynamic development using an example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.
Published Microlaser chip adds new dimensions to quantum communication


With only two levels of superposition, the qubits used in today's quantum communication technologies have limited storage space and low tolerance for interference. Engineering's hyperdimensional microlaser generates 'qudits,' photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.
Published Grid of quantum islands could reveal secrets for powerful technologies



Researchers have created grids of tiny clumps of atoms known as quantum dots and studied what happens when electrons dive into these archipelagos of atomic islands. Measuring the behavior of electrons in these relatively simple setups promises deep insights into how electrons behave in complex real-world materials and could help researchers engineer devices that make possible powerful quantum computers and other innovative technologies.
Published Exploring the possibility of extraterrestrial life living in caves


For millennia, caves have served as shelters for prehistoric humans. Caves have also intrigued scholars from early Chinese naturalists to Charles Darwin. A cave ecologist has been in and out of these subterranean ecosystems, examining the unique life forms -- and unique living conditions -- that exist in Earth's many caves. But what does that suggest about caves on other planetary bodies? In two connected studies, engineers, astrophysicists, astrobiologists and astronauts lay out the research that needs to be done to get us closer to answering the old-age question about life beyond Earth.