Showing 20 articles starting at article 1501
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Offbeat: General
Published A transistor made of wood



Researchers have developed the first transistor made of wood. Their study paves the way for further development of wood-based electronics and control of electronic plants.
Published Direct image of a black hole expelling a powerful jet



Astronomers have observed, in one image, the shadow of the black hole at the center of the galaxy Messier 87 (M87) and the powerful jet expelled from it. Thanks to this new image, astronomers can better understand how black holes can launch such energetic jets.
Published Tunneling electrons



By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Ingestible 'electroceutical' capsule stimulates hunger-regulating hormone



Engineers have shown that by using an ingestible capsule that delivers an electrical current to the cells they can stimulate the release of the hormone ghrelin. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as anorexia or cachexia.
Published Nifty nanoparticles help 'peel back the curtain' into the world of super small things



Physicists are using nanoparticles to develop new sources of light that will allow us to 'peel back the curtain' into the world of extremely small objects -- thousands of times smaller than a human hair -- with major gains for medical and other technologies.
Published Brain circuits for locomotion evolved long before appendages and skeletons



Scientists found parallels between the neural circuitry that guides locomotion in sea slugs and in more complex animals like mammals.
Published Astronomers solve the 60-year mystery of quasars -- the most powerful objects in the Universe



Scientists have unlocked one of the biggest mysteries of quasars -- the brightest, most powerful objects in the Universe -- by discovering that they are ignited by galaxies colliding.
Published Medium-sized black holes eat stars like messy toddlers



In new 3D computer simulations, astrophysicists modeled black holes of varying masses and then hurled stars (about the size of our sun) past them to see what might happen. If they exist, intermediate-mass black holes likely devour wayward stars like a messy toddler -- taking a few bites and then flinging the remains across the galaxy.
Published How a horse whisperer can help engineers build better robots



New research shows us that age-old interactions between people and their horses can teach us something about building robots designed to improve our lives.
Published Astrophysicists reveal the nature of dark matter through the study of crinkles in spacetime



Astrophysicists have provided the most direct evidence yet that Dark Matter does not constitute ultramassive particles as is commonly thought but instead comprises particles so light that they travel through space like waves. Their work resolves an outstanding problem in astrophysics first raised two decades ago: why do models that adopt ultramassive Dark Matter particles fail to correctly predict the observed positions and the brightness of multiple images of the same galaxy created by gravitational lensing?
Published Jellyfish-like robots could one day clean up the world's oceans



Roboticists have developed a jellyfish-inspired underwater robot with which they hope one day to collect waste from the bottom of the ocean. The almost noise-free prototype can trap objects underneath its body without physical contact, thereby enabling safe interactions in delicate environments such as coral reefs. Jellyfish-Bot could become an important tool for environmental remediation.
Published Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons



A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
Published Mudskippers could be key to understanding evolution of blinking



Blinking is crucial for the eye. It's how animals clean their eyes, protect them, and even communicate. But how and why did blinking originate? Researchers have studied the mudskipper, an amphibious fish that spends most of its day on land, to better understand why blinking is a fundamental behavior for life on land.
Published Scientists detect seismic waves traveling through Martian core



New NASA InSight research reveals that Mars has a liquid core rich in sulfur and oxygen, leading to new clues about how terrestrial planets form, evolve and potentially sustain life.
Published Pioneering research sheds new light on the origins and composition of planet Mars



A new study has uncovered intriguing insights into the liquid core at the centre of Mars, furthering understanding of the planet's formation and evolution.
Published Vaccine printer could help vaccines reach more people



Researchers have designed a tabletop-sized vaccine printer that could be scaled up to produce hundreds of vaccine doses in a day and deployed anywhere vaccines are needed. The vaccine doses are contained within microneedle patches that can be stored long-term at room temperature and applied to the skin, avoiding the need for injections.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published Making better measurements of the composition of galaxies



A study using data from telescopes on Earth and in the sky resolves a problem plaguing astronomers working in the infrared and could help make better observations of the composition of the universe with the James Webb Space Telescope and other instruments.
Published Cheaper method for making woven displays and smart fabrics -- of any size or shape



Researchers have developed next-generation smart textiles -- incorporating LEDs, sensors, energy harvesting, and storage -- that can be produced inexpensively, in any shape or size, using the same machines used to make the clothing we wear every day.
Published Nanowire networks learn and remember like a human brain



Scientists have demonstrated nanowire networks can exhibit both short- and long-term memory like the human brain.