Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Kink state' control may provide pathway to quantum electronics      (via sciencedaily.com)     Original source 

The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

'Miracle' filter turns store-bought LEDs into spintronic devices      (via sciencedaily.com)     Original source 

Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: General
Published

How molecular interactions make it possible to overcome the energy barrier      (via sciencedaily.com)     Original source 

Non-reciprocal interactions allow the design of more efficient molecular systems. Scientists now propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum sensor for the atomic world      (via sciencedaily.com)     Original source 

In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nonreciprocal interactions go nonlinear      (via sciencedaily.com)     Original source 

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Researchers explore the interplay between high-affinity DNA and carbon nanotubes      (via sciencedaily.com)     Original source 

Single-walled carbon nanotubes (SWCNTs) hold promise for biomedicine and nanoelectronics, yet the functionalization with single-stranded DNA (ssDNA) remains a challenge. Researchers using high-affinity ssDNA sequences identified through high-throughput selection. They demonstrated the effectivity and stability of these constructs using molecular dynamics simulations. Machine-learning models were used to accurately predict patterns that govern ssDNA-SWCNT binding affinity. These findings provide valuable insights into the interactions between ssDNA and SWCNTs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine      (via sciencedaily.com)     Original source 

Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Spin qubits go trampolining      (via sciencedaily.com)     Original source 

Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Engineering: Robotics Research Offbeat: General Offbeat: Plants and Animals
Published

It's got praying mantis eyes      (via sciencedaily.com)     Original source 

The praying mantis is one of the few insects with compound eyes and the ability to perceive 3D space. Engineers are replicating their visual systems to make machines see better.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

Nanoscale device simultaneously steers and shifts frequency of optical light, pointing the way to future wireless communication channels      (via sciencedaily.com)     Original source 

A tunable metasurface can control optical light in space and time, offering a path toward new ways of wirelessly and securely transmitting large amounts of data both on Earth and in space.

Chemistry: Biochemistry Environmental: General Geoscience: Environmental Issues
Published

Traffic-related ultrafine particles hinder mitochondrial functions in olfactory mucosa      (via sciencedaily.com)     Original source 

Ultrafine particles, UFPs, the smallest contributors to air pollution, hinder the function of mitochondria in human olfactory mucosa cells, a new study shows. The study showed that traffic-related UFPs impair mitochondrial functions in primary human olfactory mucosa cells by hampering oxidative phosphorylation and redox balance.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Offbeat: General Physics: General
Published

A new way to make element 116 opens the door to heavier atoms      (via sciencedaily.com)     Original source 

Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers develop more environmentally friendly and cost-effective method for soil remediation      (via sciencedaily.com)     Original source 

Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.

Archaeology: General Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Paleontology: Fossils Paleontology: General
Published

Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones      (via sciencedaily.com)     Original source 

A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.

Biology: Microbiology Chemistry: Biochemistry Chemistry: General
Published

Pioneering the cellular frontier      (via sciencedaily.com)     Original source 

Scientists use a multimodal approach that combines hard X-ray computed tomography and X-ray fluorescence imaging to see the structure and chemical processes inside of a single cell.

Chemistry: Biochemistry Chemistry: General Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Converting captured carbon to fuel: Study assesses what's practical and what's not      (via sciencedaily.com)     Original source 

A new analysis sheds light on major shortfalls of a recently proposed approach to capture CO2 from air and directly convert it to fuel using electricity. The authors also provide a new, more sustainable, alternative.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Organs on demand? Scientists print voxel building blocks      (via sciencedaily.com)     Original source 

Scientists are bioprinting 3D structures with a material that is a close match for human tissue, paving the way for true biomanufacturing.

Chemistry: Biochemistry
Published

Researchers clarify how soft materials fail under stress      (via sciencedaily.com)     Original source 

Understanding how soft materials fail under stress is critical for solving engineering challenges as disparate as pharmaceutical technology and landslide prevention. A new study linking a spectrum of soft material behaviors -- previously thought to be unrelated -- led researchers to identify a new parameter they call the brittility factor, which allows them to simplify soft material failure behavior. This will ultimately help engineers design better materials that meet future challenges.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Waste Styrofoam can now be converted into polymers for electronics      (via sciencedaily.com)     Original source 

A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Shining light on amyloid architecture      (via sciencedaily.com)     Original source 

Researchers use microscopy to chart amyloid beta's underlying structure and yield insight into neurodegenerative disease.