Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Computer Science: Quantum Computers

Return to the site home page

Computer Science: General Computer Science: Quantum Computers
Published

Verifying the work of quantum computers      (via sciencedaily.com)     Original source 

Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Mathematics: Puzzles
Published

Where quantum computers can score      (via sciencedaily.com)     Original source 

The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Staying in the loop: How superconductors are helping computers 'remember'      (via sciencedaily.com)     Original source 

To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: General Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: General
Published

Satellites for quantum communications      (via sciencedaily.com)     Original source 

Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Powerful new tool ushers in new era of quantum materials research      (via sciencedaily.com)     Original source 

Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Design rules and synthesis of quantum memory candidates      (via sciencedaily.com)     Original source 

In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Making quantum bits fly      (via sciencedaily.com)     Original source 

Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage      (via sciencedaily.com)     Original source 

Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.

Chemistry: Biochemistry Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Network of quantum sensors boosts precision      (via sciencedaily.com)     Original source 

Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: Quantum Computers Engineering: Robotics Research Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

AI-enabled atomic robotic probe to advance quantum material manufacturing      (via sciencedaily.com)     Original source 

Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make nanoparticles dance to unravel quantum limits      (via sciencedaily.com)     Original source 

The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Umbrella for atoms: The first protective layer for 2D quantum materials      (via sciencedaily.com)     Original source 

As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Resurrecting niobium for quantum science      (via sciencedaily.com)     Original source 

Niobium has long been considered an underperformer in superconducting qubits. Scientists have now engineered a high-quality niobium-based qubit, taking advantage of niobium's superior qualities.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists closer to solving mysteries of universe after measuring gravity in quantum world      (via sciencedaily.com)     Original source 

Scientists are closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level. Experts have never fully understood how the force works in the tiny quantum world -- but now physicists have successfully detected a weak gravitational pull on a tiny particle using a new technique.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Measuring the properties of light: Scientists realize new method for determining quantum states      (via sciencedaily.com)     Original source 

Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrons become fractions of themselves in graphene      (via sciencedaily.com)     Original source 

Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.

Biology: Biochemistry Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers achieve breakthrough in quantum sensing      (via sciencedaily.com)     Original source 

A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers
Published

A new design for quantum computers      (via sciencedaily.com)     Original source 

Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator -- a specific type of quantum computer -- could lead to new discoveries about how the world works at the smallest scales. Quantum scientists have developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

1,000 atomic qubits and rising      (via sciencedaily.com)     Original source 

Making quantum systems more scalable is one of the key requirements for the further development of quantum computers because the advantages they offer become increasingly evident as the systems are scaled up. Researchers have recently taken a decisive step towards achieving this goal.